Javad Rahebi
Makale | 2023 | DIAGNOSTICS 13 ( 10 ) , pp.1 - 14
This paper presents a robust colon cancer diagnosis method based on the feature selection method. The proposed method for colon disease diagnosis can be divided into three steps. In the first step, the images’ features were extracted based on the convolutional neural network. Squeezenet, Resnet-50, AlexNet, and GoogleNet were used for the convolutional neural network. The extracted features are huge, and the number of features cannot be appropriate for training the system. For this reason, the metaheuristic method is used in the second step to reduce the number of features. This research uses the grasshopper optimization algorithm t . . .o select the best features from the feature data. Finally, using machine learning methods, colon disease diagnosis was found to be accurate and successful. Two classification methods are applied for the evaluation of the proposed method. These methods include the decision tree and the support vector machine. The sensitivity, specificity, accuracy, and F1Score have been used to evaluate the proposed method. For Squeezenet based on the support vector machine, we obtained results of 99.34%, 99.41%, 99.12%, 98.91% and 98.94% for sensitivity, specificity, accuracy, precision, and F1Score, respectively. In the end, we compared the suggested recognition method’s performance to the performances of other methods, including 9-layer CNN, random forest, 7-layer CNN, and DropBlock. We demonstrated that our solution outperformed the others Daha fazlası Daha az
Javad Rahebi
Makale | 2023 | International Journal of Nanotechnology20 ( 1-4 ) , pp.25 - 45
In this study, an automated segmentation method is used to increase the speed of diagnosis and reduce the segmentation error of CT scans of the lung. In the proposed technique, the fishier mantis optimiser (FMO) algorithm is modelling and formulated based on the intelligent behaviour of mantis insects for hunting to create an intelligent algorithm for image segmentation. In the second phase of the proposed method, the proposed algorithm is used to cluster scanned image images of COVID-19 patients. Implementation of the proposed technique on CT scan images of patients shows that the similarity index of the proposed method is 98.36%, . . . accuracy is 98.45%, and sensitivity is 98.37%. The proposed algorithm is more accurate in diagnosing COVID-19 patients than the falcon algorithm, the spotted hyena optimiser (SHO), the Grasshopper optimisation algorithm (GOA), the grey wolf optimisation algorithm (GWO), and the black widow optimisation algorithm (BWO) Daha fazlası Daha az
Javad Rahebi
Makale | 2022 | SPRINGER
Today, much of the information is storing in images. To transfer information in the form of images, image compression is required. Compressing images reduces the size of images and sends them faster over the network. One of the most methods of image compression is the vector quantization. For vector quantization compression, the codebook is using in cryptography and decryption. The vector quantization compression method typically uses codebooks that are not optimized, which reduces the compression quality of the images. Choosing the optimal codebook makes compression of images with higher quality. Choosing the optimal codebook is a . . .difficult optimization problem and therefore requires intelligent algorithms to solve it. In this paper, the whale optimization algorithm is used to find the optimal codebook in image compression. Whale Optimization Algorithm has different search strategies and is an ideal algorithm for finding the optimal codebook in images compression. Implementation of the proposed algorithm for compression on several standard images shows that the proposed method compresses images with appropriate quality. The proposed method performs more efficient compression than the proposed algorithms such as particle swarm optimization, bat, and firefly algorithms. The signal-to-noise ratio of the proposed method is higher than the compared methods. Experiments on a set of standard images show the proposed method compared to the Fire Fly, Bat, and Differential evolution, Improved Particle Swarm Optimization, and Improved Differential Evolution methods with a compression execution time of 60.48 and 10.21, respectively. , 4.79, 5.09 and 3.94 decreased. The proposed method in compression has a higher PSNR index of about 17 than the Linde-Buzo-Gray method Daha fazlası Daha az
Javad Rahebi
Makale | 2022 | Multimedia Tools and Applications
A growing number of qualified ophthalmologists are promoting the need to use computer-based retinal eye processing image recognition technologies. There are differ- ent methods and algorithms in retinal images for detecting optic discs. Much attention has been paid in recent years using intelligent algorithms. In this paper, in the human retinal images, we used the Grasshopper optimization algorithm to implement a new automated method for detecting an optic disc. The clever algorithm is influenced by the social nature of the grasshopper, the intelligent Grasshopper algorithm. Include this algorithm; the population contains the grass . . .hoppers, each of which has a common luminance or exercise score. In this method, two-by-two insects are compared, so it could be shown that less attractive insects shift towards more attractive insects. Finally, one of the most attractive insects is selected, and this insect gives an optimum solution to the problem. Here, we used the light intensity of the retinal pixels instead of grasshopper illuminations. Accord- ing to local variations, the effect of these insects also indicates different light intensity values in images. Since the brightest area “represents the optic disc in retinal images, all insects travel to the brightest area, which leads to the determined position for an optic disc in the image. The performance was evaluated on 210 images, reflecting three Open to the public and sequentially distributed datasets DIARETDB1 89 images, STARE 81 images, and DRIVE 40 images. The results of the proposed algorithm implementation give a 99.51% accuracy rate in the DiaRetDB1 dataset, 99.67% in the STARE dataset, and 99.62% in the DRIVE dataset. The results of the implementation show the strong capacity and accuracy of the proposed algorithm for detecting the optic disc from retinal images. Also, the recorded time required for (OD) detection in these images is180.14 s for the DiaRetDB1, 65.13s for STARE, and 80.64s for DRIVE, respectively. These are average values for the times Daha fazlası Daha az
Javad Rahebi
Makale | 2023 | Article,Energies , pp.1 - 18
For Brush-less DC motors to function better under various operating settings, such as constant load situations, variable loading situations, and variable set speed situations, speed controller design is essential. Conventional controllers including proportional integral controllers, frequently fall short of efficiency expectations and this is mostly because the characteristics of a Brush-less DC motor drive exhibit non linearity. This work proposes a hybrid gray wolf optimization and proportional integral controller for management of the speed in Brush-less DC motors to address this issue. For constant load conditions, varying load . . .situations and varying set speed situations, the proposed controller’s efficiency is evaluated and contrasted with that of PID controller, PSO-PI controller, and ANFIS. In this study, two PI controller are used to get the more stability of the system based on tuning of their coefficients with meta heuristic method. The simulation findings show that Hybrid GWO-PI-based controllers are in every way superior to other controllers under consideration. In this study, four case studies are presented, and the best-case study was obtained 0.18619, 0.01928, 0.00030, and 0.01233 for RMSE, IAE, ITAE, and ISE respectively Daha fazlası Daha az
Javad Rahebi
Makale | 2022 | Hindawi Computational Intelligence and Neuroscience
Automatic diagnosis of arrhythmia by electrocardiogram has a signicant role to play in preventing and detecting cardiovascular disease at an early stage. In this study, a deep neural network model based on Harris hawks optimization is presented to arrive at a temporal and spatial fusion of information from ECG signals. Compared with the initial model of the multichannel deep neural network mechanism, the proposed model of this research has a exible input length; the number of parameters is halved and it has a more than 50% reduction in computations in real-time processing. e results of the simulation demonstrate that the approach . . . proposed in this research had a rate of 96.04%, 93.94%, and 95.00% for sensitivity, specicity, and accuracy. Furthermore, the proposed approach has a practical advantage over other similar previous methods Daha fazlası Daha az
Haedar Al-Safi | Jorge Munilla | Javad Rahebi
Makale | 2022 | SPRINGER
A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patient . . .s' records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75, 92.15, and 95.69, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN Daha fazlası Daha az
Javad Rahebi
Makale | 2023 | Signal, Image and Video Processing , pp.1 - 18
Abstract Palm print identification is a biometric technique that relies on the distinctive characteristics of a person’s palm print to distinguish and authenticate their identity. The unique pattern of ridges, lines, and other features present on the palm allows for the identification of an individual. The ridges and lines on the palm are formed during embryonic development and remain relatively unchanged throughout a person’s lifetime, making palm prints an ideal candidate for biometric identification. Using deep learning networks, such as GoogLeNet, SqueezeNet, and AlexNet combined with gray wolf optimization, we achieved to extra . . .ct and analyze the unique features of a person’s palm print to create a digital representation that can be used for identification purposes with a high degree of accuracy. To this end, two well-known datasets, the Hong Kong Polytechnic University dataset and the Tongji Contactless dataset, were used for testing and evaluation. The recognition rate of the proposed method was compared with other existing methods such as principal component analysis, including local binary pattern and Laplacian of Gaussian-Gabor transform. The results demonstrate that the proposed method outperforms other methods with a recognition rate of 96.72%. These findings show that the combination of deep learning and gray wolf optimization can effectively improve the accuracy of human identification using palm print images Daha fazlası Daha az
Javad Rahebi
Makale | 2022 | MOBILE INFORMATION SYSTEMS , pp.1 - 18
This article proposes an ambulance vehicle routing approach in smart cities. The approach is based on the bat algorithm and convolutional neural network (BA-CNN). It aims to take transfer the patients confidentially, accurately, and quickly. The type of CNN used in this research is a residual network (ResNet). The node method is responsible for creating the city map. In the beginning, information about the accident place is received by the control station and forwarded to both the hospital and the ambulance. The driver feeds the data that contain the ambulance vehicle's node position and the accident location to the BA-CNN vehicle r . . .outing algorithm. The algorithm then obtains the shortest path to reach the location of the accident by the driver. When the vehicle arrives at the accident location, the driver updates the algorithm with hospital and accident positions. Then, the shortest path (which leads to the fast reach time) to the hospital is calculated. The bat algorithm provides offline data for a possible combination of different source and destination coordinates. The offline data are then trained by utilizing a neural network. The neural network is used for finding the shortest routes between source and destination. The performance evaluation of the BA-CNN algorithm is based on the following metrics: end-to-end delay (EED), throughput, and packet delivery fraction (PDF). This BA-CNN is compared with counterparts, including three different existing methods such as TBM, TVR, and SAODV. The experiments demonstrate that the PDF of our method is 0.90 for 10 malicious nodes, which is higher than in the TBM, TVR, and SAODV Daha fazlası Daha az
Javad Rahebi
Makale | 2022 | Energies
: Internet of Things (IoT), a strong integration of radio frequency identifier (RFID), wireless devices, and sensors, has provided a difficult yet strong chance to shape existing systems into intelligent ones. Many new applications have been created in the last few years. As many as a million objects are anticipated to be linked together to form a network that can infer meaningful conclusions based on raw data. This means any IoT system is heterogeneous when it comes to the types of devices that are used in the system and how they communicate with each other. In most cases, an IoT network can be described as a layered network, with . . .multiple tiers stacked on top of each other. IoT network performance improvement typically focuses on a single layer. As a result, effectiveness in one layer may rise while that of another may fall. Ultimately, the achievement issue must be addressed by considering improvements in all layers of an IoT network, or at the very least, by considering contiguous hierarchical levels. Using a parallel and clustered architecture in the device layer, this paper examines how to improve the performance of an IoT network’s controller layer. A particular clustered architecture at the device level has been shown to increase the performance of an IoT network by 16% percent. Using a clustered architecture at the device layer in conjunction with a parallel architecture at the controller layer boosts performance by 24% overall Daha fazlası Daha az
Javad Rahebi
Makale | 2023 | Applied Sciences , pp.1 - 18
Abstract The study focuses on the integration of a fuzzy logic-based Maximum Power Point Tracking (MPPT) system, an optimized proportional Integral-based voltage controller, and the Jellyfish Optimization Algorithm into a solar PV battery setup. This integrated approach aims to enhance energy harvesting efficiency under varying environmental conditions. The study’s innovation lies in effectively addressing challenges posed by diverse environmental factors and loads. The utilization of MATLAB 2022a Simulink for modeling and the Jellyfish Optimization Algorithm for PI-controller tuning further strengthens our findings. Testing scenari . . .os, including constant and variable irradiation, underscore the significant enhancements achieved through the integration of fuzzy MPPT and the Jellyfish Optimization Algorithm with the PI-based voltage controller. These enhancements encompass improved power extraction, optimized voltage regulation, swift settling times, and overall efficiency gains Daha fazlası Daha az
Javad Rahebi
Makale | 2023 | Springer
Compressing the image causes less memory to be used to store the images. Compressing images increases the transmission speed of compressed images in the network. Vector quantization (VQ) is one of the image compression methods. The challenge of the vector quantization method for compression is the non-optimization of the codebooks. Codebook optimization increases the quality of compressed images and reduces the volume of compressed images. Various methods of swarm intelligence and meta-heuristics are used to improve the vector quantization algorithm, but using meta-heuristic methods based on mathematical sciences has less history. T . . .his paper uses an improved sine–cosine algorithm (SCA) version to optimize the vector quantization algorithm and reduce the compression error. The reason for using the SCA algorithm in image compression is the balance between the search for exploration and exploitation search by sine and cosine functions, which makes it less likely to get caught in local optima. The proposed method to reduce the calculation error of the SCA algorithm uses spiral trigonometric functions and a new mathematical helix. The proposed method searches for optimal solutions with spiral and snail searches, increasing the chances of finding more optimal solutions. The proposed method aims to find a more optimal codebook by the improved version of SCA in the VQ compression algorithm. The advantage of the proposed method is finding optimal codebooks and increasing the quality of compressed images. The proposed method implementing in MATLAB software, and experiments showed that the proposed method’s PSNR index improves the VQ algorithm’s ratio by 13.73%. Evaluations show that the proposed method’s PSNR index of compressed images is higher and better than PBM, CS-LBG, FA-LBG, BA-LBG, HBMO-LBG, QPSO-LBG, and PSO-LBG. The result shows that the proposed method (or ISCA-LBG) has less time complexity than HHO and WOA compression algorithms.Compressing the image causes less memory to be used to store the images. Compressing images increases the transmission speed of compressed images in the network. Vector quantization (VQ) is one of the image compression methods. The challenge of the vector quantization method for compression is the non-optimization of the codebooks. Codebook optimization increases the quality of compressed images and reduces the volume of compressed images. Various methods of swarm intelligence and meta-heuristics are used to improve the vector quantization algorithm, but using meta-heuristic methods based on mathematical sciences has less history. This paper uses an improved sine–cosine algorithm (SCA) version to optimize the vector quantization algorithm and reduce the compression error. The reason for using the SCA algorithm in image compression is the balance between the search for exploration and exploitation search by sine and cosine functions, which makes it less likely to get caught in local optima. The proposed method to reduce the calculation error of the SCA algorithm uses spiral trigonometric functions and a new mathematical helix. The proposed method searches for optimal solutions with spiral and snail searches, increasing the chances of finding more optimal solutions. The proposed method aims to find a more optimal codebook by the improved version of SCA in the VQ compression algorithm. The advantage of the proposed method is finding optimal codebooks and increasing the quality of compressed images. The proposed method implementing in MATLAB software, and experiments showed that the proposed method’s PSNR index improves the VQ algorithm’s ratio by 13.73%. Evaluations show that the proposed method’s PSNR index of compressed images is higher and better than PBM, CS-LBG, FA-LBG, BA-LBG, HBMO-LBG, QPSO-LBG, and PSO-LBG. The result shows that the proposed method (or ISCA-LBG) has less time complexity than HHO and WOA compression algorithms Daha fazlası Daha az