Filtreler
Filtreler
Bulunan: 69 Adet 0.002 sn
Koleksiyon [5]
Tam Metin [2]
Yazar [20]
Yayın Türü [3]
Konu Başlıkları [20]
Yayın Yılı [4]
Yayıncı [20]
Dil [4]
Dergi [19]
Okul Öncesi Eğitiminde Fen Eğitimi Temelinde Gerçekleştirilen STEM Uygulamalarının Öğrenci, Öğretmen ve Veli Açısından Değerlendirilmesi

BURÇAK CEREN AKPINAR

Makale | 2018 | Yaşadıkça Eğitim Dergisi

STEM; Science, Technology, Engineering & Mathematics kelimelerinin baş harflerinden oluşan veöğrencilerin fen bilimleri ve matematik bilgilerinin mühendisliğin uygulamaları ile ürüne dönüştüğü bireğitim yaklaşımıdır. Ortaya çıktığı ABD’de okul öncesinden lise sonuna kadar Gelecek Nesil FenStandartları çerçevesinde mühendislik tasarımı ve disiplinler arası ilişkilendirmelerle uygulanmayaçalışılmaktadır. Bu araştırma, okul öncesi eğitiminde STEM uygulamalarının öğrenci, öğretmen ve veliaçısından değerlendirilmesi amacıyla yapılmıştır. Araştırma modeli olarak nitel araştırma modellerindendurum çalışması kullanılmıştır. Araştırma, okul . . .öncesi 5 yaş grubunda yer alan 9 erkek ve 11 kız olmaküzere toplam 20 öğrencinin katılımıyla 8 haftada 12 saat olarak gerçekleştirilmiştir. Veri toplama aracıolarak Aktivite Değerlendirmeye Yönelik Görüşme Formu, Öğretmen Gözlem Formu ve Veli GözlemFormu kullanılmıştır. Uygulanan bütün formlarda süreçle ilgili sorulara yer verilmiştir. Sonuç olarak; okulöncesi eğitiminde STEM uygulamaları ile öğrencilerin fen ve matematik kazanımları elde ettiği; yaratıcılık,eleştirel düşünme, işbirliği yapma ve iletişim kurma gibi 21. Yüzyıl becerilerinin geliştiği tespit edilmiştir.Öğretmen ve velilerden alınan görüşler öğrencilerinin görüşlerini doğrulamaktadır Daha fazlası Daha az

The Leukemia Healthy and Unhealthy Detection with Wavelet Transform Based On Co-Occurrence Matrix and Support Vector Machine

Javad Rahebi

Makale | 2021 | Avrupa Bilim ve Teknoloji Dergisi

Leukemia is a malignant disease and belongs in a broader sense to Cancers. There are many types of leukemia, each of which requires specific treatment. Leukemia is almost one-third of all cancer deaths in children and young people. The most common type of leukemia in children is acute lymphoblastic leukemia (ALL). In this paper, a new approach is implanted on Leukemia ALL database. For the method the wavelet transform is used for feature extraction, the gray level co-occurrence matrix is used. Also, for classification, the SVM (Support Vector Machine) method is used. The proposed method is the best in applying the system designed to . . . the Local Binary Pattern (LBP) and Histogram of Orientation (HOG) methods. This system aims to detect, diagnose, and verify leukemia cells from microscopic images to get high accuracy, efficiency, reliability, less processing time, smaller error, not complexity, fast, and easy to work. The system was built using microscopic images by examining changes in texture, colors, and statistical analysis. The success rate was 96.1667% for cancer data and 99.8833% for non-cancer data Daha fazlası Daha az

TÜRKİYE DEVLET TAHVİL PİYASASININ EKONOMİK BÜYÜME ÜZERİNDEKİ ETKİSİ

AREF YELGHI

Makale | 2021 | Doğuş Üniversitesi Dergisi

Günümüze gelindiğinde devletlerin finansal gereksinimlerinin giderilmesi içinbaşvurdukları önemli yollardan biri tahvil ihracıdır. Türkiye’de tahvil piyasasındanen çok devletin yararlandığı görülmektedir. Literatürde ekonomik büyüme ile hissesenedi piyasası ve kredi arasında birçok çalışma bulunurken tahvil piyasası ile ilgilioldukça az çalışma yapılmıştır. Finansal piyasalarında tahvil piyasası önemli payalması ve ekonomik büyümesinde etkisi ne ölçüde oluğu merak edilmektedir. Sondönemlerde tahvil piyasasının gelişimi hem ulusal hem uluslararası piyasada hızkazanmıştır. Bu çalışmada Türkiye tahvil piyasasını ile ekonomik büyüme ara . . .sındakiuzun dönem ilişkisini incelemesini amaçlanmaktadır. Araştırmada Peseran vediğerleri (1999), Peseran ve Shin (2001) önerdiği ARDL modelindenyararlanılmaktadır. Çalışmada Uluslararası Toplam Borçlanma Senetleri/ GSYİHoranı, Toplam Ulusal Borçlanma Senetleri/GSYİH oranı ile büyüme oranı 2000Q1-2017Q4 yılları arasındaki mevsimsel veriler kullanılmaktadır. Bulgularda büyüme iledevlet tahvilleri arasında ilişkisi, pozitif ve eş bütünleşik sonucu ortaya çıkmaktadır.Dolaysıyla devlet tahvil ihracı ile Türkiye ekonomisine katkı sağlayabilir Daha fazlası Daha az

Human retinal optic disc detection with grasshopper optimization algorithm

Javad Rahebi

Makale | 2022 | Multimedia Tools and Applications

A growing number of qualified ophthalmologists are promoting the need to use computer-based retinal eye processing image recognition technologies. There are differ- ent methods and algorithms in retinal images for detecting optic discs. Much attention has been paid in recent years using intelligent algorithms. In this paper, in the human retinal images, we used the Grasshopper optimization algorithm to implement a new automated method for detecting an optic disc. The clever algorithm is influenced by the social nature of the grasshopper, the intelligent Grasshopper algorithm. Include this algorithm; the population contains the grass . . .hoppers, each of which has a common luminance or exercise score. In this method, two-by-two insects are compared, so it could be shown that less attractive insects shift towards more attractive insects. Finally, one of the most attractive insects is selected, and this insect gives an optimum solution to the problem. Here, we used the light intensity of the retinal pixels instead of grasshopper illuminations. Accord- ing to local variations, the effect of these insects also indicates different light intensity values in images. Since the brightest area “represents the optic disc in retinal images, all insects travel to the brightest area, which leads to the determined position for an optic disc in the image. The performance was evaluated on 210 images, reflecting three Open to the public and sequentially distributed datasets DIARETDB1 89 images, STARE 81 images, and DRIVE 40 images. The results of the proposed algorithm implementation give a 99.51% accuracy rate in the DiaRetDB1 dataset, 99.67% in the STARE dataset, and 99.62% in the DRIVE dataset. The results of the implementation show the strong capacity and accuracy of the proposed algorithm for detecting the optic disc from retinal images. Also, the recorded time required for (OD) detection in these images is180.14 s for the DiaRetDB1, 65.13s for STARE, and 80.64s for DRIVE, respectively. These are average values for the times Daha fazlası Daha az

Türkiye’de Rüzgâr Enerjisinin Mevcut Durumu ve Geleceği

Vedat Esen

Makale | 2022 | IGSCONG’22

Yenilenebilir enerji kaynakları, fosil yakıtların yakın zamanda tükeneceğinin öngörülmesi ve çevreye olan zararları nedeniyle tüm dünyada olduğu gibi Türkiye’de de elektrik enerjisi üretimi için alternatif olmaya başlamış ve bu konuda çalışmalar hız kazanmıştır. Yenilenebilir enerji kaynakları içerisinde, büyük miktarlarda enerji üretimine imkân vermesi nedeniyle öne çıkan rüzgâr enerjisi diğer enerji kaynaklarına göre tercih edilir duruma gelmiştir. Rüzgâr enerjisi teknolojilerinin gelişmesi ile birlikte coğrafi koşulları uygun olan ülkeler, yatırımlarını ağırlıklı olarak rüzgâr enerjisine yapmaya başlamışlardır. Türkiye’nin coğraf . . .i yapısı, rüzgâr oluşan bölge sayısını oldukça zengin kılmaktadır. Enerji konusunda dışa bağımlılığını en aza indirmek isteyen ülkemiz bu amaçla son on yılda yatırımlarını rüzgâr enerjisine yoğunlaştırmıştır. Bu çalışma Türkiye’nin rüzgâr enerjisi konusunda mevcut durumu ve geleceğine odaklanmıştır. Bu amaçla ilk olarak rüzgâr enerjisinin dünyadaki mevcut durumu ve geleceği ile ilgili çalışmalar incelenmiştir. Sonrasında ise Türkiye’nin genel elektrik enerjisi üretimi, rüzgâr enerjisinin mevcut durumu ve geleceği detaylandırılmıştır Daha fazlası Daha az

Automatic personality prediction: an enhanced method using ensemble modeling

Taymaz Akan

Makale | 2022 | ORIGINAL ARTICLE

Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods includ . . .ing term frequency vector-based, ontology-based, enriched ontologybased, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP Daha fazlası Daha az

A model to measure the spread power of rumors

Taymaz Akan

Makale | 2022 | ORIGINAL RESEARCH

With technologies that have democratized the production and reproduction of information, a signifcant portion of daily interacted posts in social media has been infected by rumors. Despite the extensive research on rumor detection and verifcation, so far, the problem of calculating the spread power of rumors has not been considered. To address this research gap, the present study seeks a model to calculate the Spread Power of Rumor (SPR) as the function of content-based features in two categories: False Rumor (FR) and True Rumor (TR). For this purpose, the theory of Allport and Postman will be adopted, which it claims that importanc . . .e and ambiguity are the key variables in rumor-mongering and the power of rumor. Totally 42 content features in two categories “importance” (28 features) and “ambiguity” (14 features) are introduced to compute SPR. The proposed model is evaluated on two datasets, Twitter and Telegram. The results showed that (i) the spread power of False Rumor documents is rarely more than True Rumors. (ii) there is a signifcant diference between the SPR means of two groups False Rumor and True Rumor. (iii) SPR as a criterion can have a positive impact on distinguishing False Rumors and True Rumors Daha fazlası Daha az

Battle Royale Optimizer with a New Movement Strategy

SARA AKAN | Taymaz Akan

Makale | 2022 | Springer Link

Gamed-based is a new stochastic metaheuristics optimization category that is inspired by traditional or digital game genres. Unlike SI-based algorithms, individuals do not work together with the goal of defeating other individuals and winning the game. Battle royale optimizer (BRO) is a Gamed-based metaheuristic optimization algorithm that has been recently proposed for the task of continuous problems. This paper proposes a modified BRO (M-BRO) in order to improve balance between exploration and exploitation. For this matter, an additional movement operator has been used in the movement strategy. Moreover, no extra parameters are re . . .quired for the proposed approach. Furthermore, the complexity of this modified algorithm is the same as the original one. Experiments are performed on a set of 19 (unimodal and multimodal) benchmark functions (CEC 2010). The proposed method has been compared with the original BRO alongside six well-known/recently proposed optimization algorithms. The results show that BRO with additional movement operator performs well to solve complex numerical optimization problems compared to the original BRO and other competitors Daha fazlası Daha az

Multi-Controller Model for Improving the Performance of IoT Networks

Javad Rahebi

Makale | 2022 | Energies

: Internet of Things (IoT), a strong integration of radio frequency identifier (RFID), wireless devices, and sensors, has provided a difficult yet strong chance to shape existing systems into intelligent ones. Many new applications have been created in the last few years. As many as a million objects are anticipated to be linked together to form a network that can infer meaningful conclusions based on raw data. This means any IoT system is heterogeneous when it comes to the types of devices that are used in the system and how they communicate with each other. In most cases, an IoT network can be described as a layered network, with . . .multiple tiers stacked on top of each other. IoT network performance improvement typically focuses on a single layer. As a result, effectiveness in one layer may rise while that of another may fall. Ultimately, the achievement issue must be addressed by considering improvements in all layers of an IoT network, or at the very least, by considering contiguous hierarchical levels. Using a parallel and clustered architecture in the device layer, this paper examines how to improve the performance of an IoT network’s controller layer. A particular clustered architecture at the device level has been shown to increase the performance of an IoT network by 16% percent. Using a clustered architecture at the device layer in conjunction with a parallel architecture at the controller layer boosts performance by 24% overall Daha fazlası Daha az

Richards’s curve induced Banach space valued ordinary and fractional neural network approximation

SEDA KARATEKE

Makale | 2022 | Springer Link

Here we perform the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional deriva- tives. Our operators are defined by using a density function generated by the Richards curve, which is generalized logistic function. The approximations are pointwise and of the uniform norm. Th . . .e related Banach space valued feed-forward neural networks are with one hidden layer Daha fazlası Daha az

A local-holistic graph-based descriptor for facial recognition

Metin Zontul

Makale | 2022 | MULTIMEDIA TOOLS AND APPLICATIONS

Face recognition remains critical and up-to-date due to its undeniable contribution to security. Many descriptors, the most vital figures used for face discrimination, have been proposed and continue to be done. This article presents a novel and highly discriminative identifier that can maintain high recognition performance, even under high noise, varying illumination, and expression exposure. By evolving the image into a graph, the feature set is extracted from the resulting graph rather than making inferences directly on the image pixels as done conventionally. The adjacency matrix is created at the outset by considering the pixel . . .s’ adjacencies and their intensity values. Subsequently, the weighteddirected graph having vertices and edges denoting the pixels and adjacencies between them is formed. Moreover, the weights of the edges state the intensity differences between the adjacent pixels. Ultimately, information extraction is performed, which indicates the importance of each vertex in the graphic, expresses the importance of the pixels in the entire image, and forms the feature set of the face image. As evidenced by the extensive simulations performed, the proposed graphic-based identifier shows remarkable and competitive performance regarding recognition accuracy, even under extreme conditions such as high noise, variable expression, and illumination compared with the state-of-the-art face recognition methods Daha fazlası Daha az

BA-CNN: Bat Algorithm-Based Convolutional Neural Network Algorithm for Ambulance Vehicle Routing in Smart Cities

Javad Rahebi

Makale | 2022 | MOBILE INFORMATION SYSTEMS

This article proposes an ambulance vehicle routing approach in smart cities. The approach is based on the bat algorithm and convolutional neural network (BA-CNN). It aims to take transfer the patients confidentially, accurately, and quickly. The type of CNN used in this research is a residual network (ResNet). The node method is responsible for creating the city map. In the beginning, information about the accident place is received by the control station and forwarded to both the hospital and the ambulance. The driver feeds the data that contain the ambulance vehicle's node position and the accident location to the BA-CNN vehicle r . . .outing algorithm. The algorithm then obtains the shortest path to reach the location of the accident by the driver. When the vehicle arrives at the accident location, the driver updates the algorithm with hospital and accident positions. Then, the shortest path (which leads to the fast reach time) to the hospital is calculated. The bat algorithm provides offline data for a possible combination of different source and destination coordinates. The offline data are then trained by utilizing a neural network. The neural network is used for finding the shortest routes between source and destination. The performance evaluation of the BA-CNN algorithm is based on the following metrics: end-to-end delay (EED), throughput, and packet delivery fraction (PDF). This BA-CNN is compared with counterparts, including three different existing methods such as TBM, TVR, and SAODV. The experiments demonstrate that the PDF of our method is 0.90 for 10 malicious nodes, which is higher than in the TBM, TVR, and SAODV Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms