Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning

In this study, Gabor wavelet transform on the strength of deep learning which is a new approach for the symmetry face database is presented. A proposed face recognition system was developed to be used for different purposes. We used Gabor wavelet transform for feature extraction of symmetry face training data, and then, we used the deep learning method for recognition. We implemented and evaluated the proposed method on ORL and YALE databases with MATLAB 2020a. Moreover, the same experiments were conducted applying particle swarm optimization (PSO) for the feature selection approach. The implementation of Gabor wavelet feature extraction with a high number of training image samples has proved to be more effective than other methods in our study. The recognition rate when implementing the PSO methods on the ORL database is 85.42 while it is 92 with the three methods on the YALE database. However, the use of the PSO algorithm has increased the accuracy rate to 96.22 for the ORL database and 94.66 for the YALE database.

Yazar Sulayman Ahmed
Mondher Frikha
Taha Darwassh Hanawy Hussein
Javad Rahebi
Yayın Türü Makale
Tek Biçim Adres https://hdl.handle.net/20.500.14081/1378
Konu Başlıkları Optimum Feature Selection
Particle Swarm Optimization
Deep Learning
Koleksiyonlar Fakülteler
Mühendislik Fakültesi
Sayfalar -
Yayın Yılı 2021
Eser Adı
[dc.title]
Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning
Yazar
[dc.contributor.author]
Sulayman Ahmed
Yazar
[dc.contributor.author]
Mondher Frikha
Yazar
[dc.contributor.author]
Taha Darwassh Hanawy Hussein
Yazar
[dc.contributor.author]
Javad Rahebi
Yayın Yılı
[dc.date.issued]
2021
Yayın Türü
[dc.type]
Makale
Özet
[dc.description.abstract]
In this study, Gabor wavelet transform on the strength of deep learning which is a new approach for the symmetry face database is presented. A proposed face recognition system was developed to be used for different purposes. We used Gabor wavelet transform for feature extraction of symmetry face training data, and then, we used the deep learning method for recognition. We implemented and evaluated the proposed method on ORL and YALE databases with MATLAB 2020a. Moreover, the same experiments were conducted applying particle swarm optimization (PSO) for the feature selection approach. The implementation of Gabor wavelet feature extraction with a high number of training image samples has proved to be more effective than other methods in our study. The recognition rate when implementing the PSO methods on the ORL database is 85.42 while it is 92 with the three methods on the YALE database. However, the use of the PSO algorithm has increased the accuracy rate to 96.22 for the ORL database and 94.66 for the YALE database.
Yayıncı
[dc.publisher]
HINDAWI LTD
Dil
[dc.language.iso]
English
Konu Başlıkları
[dc.subject]
Optimum Feature Selection
Konu Başlıkları
[dc.subject]
Particle Swarm Optimization
Konu Başlıkları
[dc.subject]
Deep Learning
Tek Biçim Adres
[dc.identifier.uri]
https://hdl.handle.net/20.500.14081/1378
Esere Katkı Sağlayan
[dc.contributor.other]
Ahmed, S
Esere Katkı Sağlayan
[dc.contributor.other]
Frikha, M
Esere Katkı Sağlayan
[dc.contributor.other]
Hussein, TDH
Esere Katkı Sağlayan
[dc.contributor.other]
Rahebi, J
DOI
[dc.identifier.doi]
10.1155/2021/6621540
Tam Metin İndirmek için tıklayın Ön izleme
Görüntülenme Sayısı ( Şehir )
Görüntülenme Sayısı ( Ülke )
Görüntülenme Sayısı ( Zaman Dağılımı )
Görüntülenme
483
17.03.2022 tarihinden bu yana
İndirme
2
17.03.2022 tarihinden bu yana
Son Erişim Tarihi
26 Eylül 2023 03:05
Google Kontrol
Tıklayınız
database methods feature recognition wavelet approach method transform training extraction proposed symmetry learning effective proved samples accuracy implementing number increased algorithm However evaluated strength presented system developed different purposes implemented databases implementation MATLAB Moreover experiments
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms