Additional Value of Using Satellite-Based Soil Moisture and Two Sources of Groundwater Data for Hydrological Model Calibration

Although the complexity of physically-based models continues to increase, they still need to be calibrated. In recent years, there has been an increasing interest in using new satellite technologies and products with high resolution in model evaluations and decision-making. The aim of this study is to investigate the value of different remote sensing products and groundwater level measurements in the temporal calibration of a well-known hydrologic model i.e., Hydrologiska Bryans Vattenbalansavdelning (HBV). This has rarely been done for conceptual models, as satellite data are often used in the spatial calibration of the distributed models. Three different soil moisture products from the European Space Agency Climate Change Initiative Soil Measure (ESA CCI SM v04.4), The Advanced Microwave Scanning Radiometer on the Earth Observing System (EOS) Aqua satellite (AMSR-E), soil moisture active passive (SMAP), and total water storage anomalies from Gravity Recovery and Climate Experiment (GRACE) are collected and spatially averaged over the Moselle River Basin in Germany and France. Different combinations of objective functions and search algorithms, all targeting a good fit between observed and simulated streamflow, groundwater and soil moisture, are used to analyze the contribution of each individual source of information. Firstly, the most important parameters are selected using sensitivity analysis, and then these parameters are included in a subsequent model calibration. The results of our multi-objective calibration reveal a substantial contribution of remote sensing products to the lumped model calibration, even if their spatially-distributed information is lost during the spatial aggregation. Inclusion of new observations, such as groundwater levels from wells and remotely sensed soil moisture to the calibration improves the model's physical behavior, while it keeps a reasonable water balance that is the key objective of every hydrologic model.

Yazar Mehmet Cuneyd Demirel
Alparslan Ozen
SELEN ORTA
Emir Toker
Hatice Kubra Demir
Omer Ekmekcioglu
Huesamettin Taysi
Sinan Erucar
Ahmet Bilal Sag
Omer Sari
Ecem
Hayrettin Hanci
Tuerkan Irem Ozcan
Hilal Erdem
Mehmet Melih Kosucu
Eyyup Ensar Basakin
Kamal Ahmed
Awat Anwar
Muhammet Bahattin Avcuoglu
Omer Vanli
Simon Stisen
Martijn J. Booij
Yayın Türü Makale
Tek Biçim Adres https://hdl.handle.net/20.500.14081/1390
Konu Başlıkları HBV; GRACE; SMAP; ESA CCI SM v04.4; AMSR-E; Moselle River
GRACE
SMAP
ESA CCI SM
AMSR-E
Moselle River
Koleksiyonlar Plato Meslek Yüksekokulu
Sayfalar -
Yayın Yılı 2019
Eser Adı
[dc.title]
Additional Value of Using Satellite-Based Soil Moisture and Two Sources of Groundwater Data for Hydrological Model Calibration
Yazar
[dc.contributor.author]
Mehmet Cuneyd Demirel
Yazar
[dc.contributor.author]
Alparslan Ozen
Yazar
[dc.contributor.author]
SELEN ORTA
Yazar
[dc.contributor.author]
Emir Toker
Yazar
[dc.contributor.author]
Hatice Kubra Demir
Yazar
[dc.contributor.author]
Omer Ekmekcioglu
Yazar
[dc.contributor.author]
Huesamettin Taysi
Yazar
[dc.contributor.author]
Sinan Erucar
Yazar
[dc.contributor.author]
Ahmet Bilal Sag
Yazar
[dc.contributor.author]
Omer Sari
Yazar
[dc.contributor.author]
Ecem
Yazar
[dc.contributor.author]
Hayrettin Hanci
Yazar
[dc.contributor.author]
Tuerkan Irem Ozcan
Yazar
[dc.contributor.author]
Hilal Erdem
Yazar
[dc.contributor.author]
Mehmet Melih Kosucu
Yazar
[dc.contributor.author]
Eyyup Ensar Basakin
Yazar
[dc.contributor.author]
Kamal Ahmed
Yazar
[dc.contributor.author]
Awat Anwar
Yazar
[dc.contributor.author]
Muhammet Bahattin Avcuoglu
Yazar
[dc.contributor.author]
Omer Vanli
Yazar
[dc.contributor.author]
Simon Stisen
Yazar
[dc.contributor.author]
Martijn J. Booij
Yayın Yılı
[dc.date.issued]
2019
Yayın Türü
[dc.type]
Makale
Özet
[dc.description.abstract]
Although the complexity of physically-based models continues to increase, they still need to be calibrated. In recent years, there has been an increasing interest in using new satellite technologies and products with high resolution in model evaluations and decision-making. The aim of this study is to investigate the value of different remote sensing products and groundwater level measurements in the temporal calibration of a well-known hydrologic model i.e., Hydrologiska Bryans Vattenbalansavdelning (HBV). This has rarely been done for conceptual models, as satellite data are often used in the spatial calibration of the distributed models. Three different soil moisture products from the European Space Agency Climate Change Initiative Soil Measure (ESA CCI SM v04.4), The Advanced Microwave Scanning Radiometer on the Earth Observing System (EOS) Aqua satellite (AMSR-E), soil moisture active passive (SMAP), and total water storage anomalies from Gravity Recovery and Climate Experiment (GRACE) are collected and spatially averaged over the Moselle River Basin in Germany and France. Different combinations of objective functions and search algorithms, all targeting a good fit between observed and simulated streamflow, groundwater and soil moisture, are used to analyze the contribution of each individual source of information. Firstly, the most important parameters are selected using sensitivity analysis, and then these parameters are included in a subsequent model calibration. The results of our multi-objective calibration reveal a substantial contribution of remote sensing products to the lumped model calibration, even if their spatially-distributed information is lost during the spatial aggregation. Inclusion of new observations, such as groundwater levels from wells and remotely sensed soil moisture to the calibration improves the model's physical behavior, while it keeps a reasonable water balance that is the key objective of every hydrologic model.
Açık Erişim Tarihi
[dc.date.available]
2019-10-06
Yayıncı
[dc.publisher]
MDPI
Dil
[dc.language.iso]
English
Konu Başlıkları
[dc.subject]
HBV; GRACE; SMAP; ESA CCI SM v04.4; AMSR-E; Moselle River
Konu Başlıkları
[dc.subject]
GRACE
Konu Başlıkları
[dc.subject]
SMAP
Konu Başlıkları
[dc.subject]
ESA CCI SM
Konu Başlıkları
[dc.subject]
AMSR-E
Konu Başlıkları
[dc.subject]
Moselle River
Tek Biçim Adres
[dc.identifier.uri]
https://hdl.handle.net/20.500.14081/1390
Esere Katkı Sağlayan
[dc.contributor.other]
Demirel, MC
Esere Katkı Sağlayan
[dc.contributor.other]
Ozen, A
Esere Katkı Sağlayan
[dc.contributor.other]
Orta, S
Esere Katkı Sağlayan
[dc.contributor.other]
Toker, E
Esere Katkı Sağlayan
[dc.contributor.other]
Demir, HK
Esere Katkı Sağlayan
[dc.contributor.other]
Ekmekcioglu, O
Esere Katkı Sağlayan
[dc.contributor.other]
Taysi, H
Esere Katkı Sağlayan
[dc.contributor.other]
Erucar, S
Esere Katkı Sağlayan
[dc.contributor.other]
Sag, AB
Esere Katkı Sağlayan
[dc.contributor.other]
Sari, O
Esere Katkı Sağlayan
[dc.contributor.other]
Tuncer, E
Esere Katkı Sağlayan
[dc.contributor.other]
Hanci, H
Esere Katkı Sağlayan
[dc.contributor.other]
Ozcan, TI
Esere Katkı Sağlayan
[dc.contributor.other]
Erdem, H
Esere Katkı Sağlayan
[dc.contributor.other]
Kosucu, MM
Esere Katkı Sağlayan
[dc.contributor.other]
Basakin, EE
Esere Katkı Sağlayan
[dc.contributor.other]
Ahmed, K
Esere Katkı Sağlayan
[dc.contributor.other]
Anwar, A
Esere Katkı Sağlayan
[dc.contributor.other]
Avcuoglu, MB
Esere Katkı Sağlayan
[dc.contributor.other]
Vanli, O
Esere Katkı Sağlayan
[dc.contributor.other]
Stisen, S
Esere Katkı Sağlayan
[dc.contributor.other]
Booij, MJ
DOI
[dc.identifier.doi]
10.3390/w11102083
Orcid
[dc.identifier.orcid]
0000-0003-2764-9937
Tam Metin İndirmek için tıklayın Ön izleme
Görüntülenme Sayısı ( Şehir )
Görüntülenme Sayısı ( Ülke )
Görüntülenme Sayısı ( Zaman Dağılımı )
Görüntülenme
3147
17.03.2022 tarihinden bu yana
İndirme
2
17.03.2022 tarihinden bu yana
Son Erişim Tarihi
28 Eylül 2023 19:49
Google Kontrol
Tıklayınız
calibration products moisture satellite groundwater models information Climate different remote sensing contribution spatial hydrologic parameters objective search Moselle averaged source individual spatially collected (GRACE) Firstly France Germany analyze algorithms Different combinations streamflow simulated observed between
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms