Fishier mantis optimiser: a swarm intelligence algorithm for clustering images of COVID-19 pandemic

In this study, an automated segmentation method is used to increase the speed of diagnosis and reduce the segmentation error of CT scans of the lung. In the proposed technique, the fishier mantis optimiser (FMO) algorithm is modelling and formulated based on the intelligent behaviour of mantis insects for hunting to create an intelligent algorithm for image segmentation. In the second phase of the proposed method, the proposed algorithm is used to cluster scanned image images of COVID-19 patients. Implementation of the proposed technique on CT scan images of patients shows that the similarity index of the proposed method is 98.36%, accuracy is 98.45%, and sensitivity is 98.37%. The proposed algorithm is more accurate in diagnosing COVID-19 patients than the falcon algorithm, the spotted hyena optimiser (SHO), the Grasshopper optimisation algorithm (GOA), the grey wolf optimisation algorithm (GWO), and the black widow optimisation algorithm (BWO).

Süresiz Ambargo
Görüntülenme
29
17.07.2023 tarihinden bu yana
İndirme
1
17.07.2023 tarihinden bu yana
Son Erişim Tarihi
15 Ekim 2024 12:32
Google Kontrol
Tıklayınız
Tam Metin
Süresiz Ambargo
Detaylı Görünüm
Eser Adı
(dc.title)
Fishier mantis optimiser: a swarm intelligence algorithm for clustering images of COVID-19 pandemic
Yazar
(dc.contributor.author)
Cevat Rahebi
Yayın Yılı
(dc.date.issued)
2023
Tür
(dc.type)
Makale
Özet
(dc.description.abstract)
In this study, an automated segmentation method is used to increase the speed of diagnosis and reduce the segmentation error of CT scans of the lung. In the proposed technique, the fishier mantis optimiser (FMO) algorithm is modelling and formulated based on the intelligent behaviour of mantis insects for hunting to create an intelligent algorithm for image segmentation. In the second phase of the proposed method, the proposed algorithm is used to cluster scanned image images of COVID-19 patients. Implementation of the proposed technique on CT scan images of patients shows that the similarity index of the proposed method is 98.36%, accuracy is 98.45%, and sensitivity is 98.37%. The proposed algorithm is more accurate in diagnosing COVID-19 patients than the falcon algorithm, the spotted hyena optimiser (SHO), the Grasshopper optimisation algorithm (GOA), the grey wolf optimisation algorithm (GWO), and the black widow optimisation algorithm (BWO).
Açık Erişim Tarihi
(dc.date.available)
2023-05-23
Yayıncı
(dc.publisher)
International Journal of Nanotechnology
Dil
(dc.language.iso)
En
Konu Başlıkları
(dc.subject)
meta-heuristic algorithms
Konu Başlıkları
(dc.subject)
FMO
Konu Başlıkları
(dc.subject)
fishier mantis optimiser
Konu Başlıkları
(dc.subject)
COVID 19 disease
Konu Başlıkları
(dc.subject)
coronavirus
Konu Başlıkları
(dc.subject)
clustering
Tek Biçim Adres
(dc.identifier.uri)
https://hdl.handle.net/20.500.14081/1905
ISSN
(dc.identifier.issn)
1475-7435
Dergi
(dc.relation.journal)
International Journal of Nanotechnology
Dergi Sayısı
(dc.identifier.issue)
1-4
Esere Katkı Sağlayan
(dc.contributor.other)
Rahebi, Javad
DOI
(dc.identifier.doi)
10.1504/IJNT.2023.131111
Orcid
(dc.identifier.orcid)
0000-0001-9875-4860
Bitiş Sayfası
(dc.identifier.endpage)
45
Başlangıç Sayfası
(dc.identifier.startpage)
25
Dergi Cilt
(dc.identifier.volume)
20
wosquality
(dc.identifier.wosquality)
Q4
wosauthorid
(dc.contributor.wosauthorid)
DNF-7937-2022
Department
(dc.contributor.department)
Yazılım Mühendisliği
Wos No
(dc.identifier.wos)
WOS:001000397500002
Veritabanları
(dc.source.platform)
Wos
Veritabanları
(dc.source.platform)
Scopus
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms