Fishier mantis optimiser: a swarm intelligence algorithm for clustering images of COVID-19 pandemic

In this study, an automated segmentation method is used to increase the speed of diagnosis and reduce the segmentation error of CT scans of the lung. In the proposed technique, the fishier mantis optimiser (FMO) algorithm is modelling and formulated based on the intelligent behaviour of mantis insects for hunting to create an intelligent algorithm for image segmentation. In the second phase of the proposed method, the proposed algorithm is used to cluster scanned image images of COVID-19 patients. Implementation of the proposed technique on CT scan images of patients shows that the similarity index of the proposed method is 98.36%, accuracy is 98.45%, and sensitivity is 98.37%. The proposed algorithm is more accurate in diagnosing COVID-19 patients than the falcon algorithm, the spotted hyena optimiser (SHO), the Grasshopper optimisation algorithm (GOA), the grey wolf optimisation algorithm (GWO), and the black widow optimisation algorithm (BWO).

Dergi International Journal of Nanotechnology
Dergi Cilt 20
Dergi Sayısı 1-4
Sayfalar 25 - 45
Yayın Yılı 2023
Eser Adı
[dc.title]
Fishier mantis optimiser: a swarm intelligence algorithm for clustering images of COVID-19 pandemic
Yazar
[dc.contributor.author]
Javad Rahebi
Yayın Yılı
[dc.date.issued]
2023
Yayın Türü
[dc.type]
Makale
Özet
[dc.description.abstract]
In this study, an automated segmentation method is used to increase the speed of diagnosis and reduce the segmentation error of CT scans of the lung. In the proposed technique, the fishier mantis optimiser (FMO) algorithm is modelling and formulated based on the intelligent behaviour of mantis insects for hunting to create an intelligent algorithm for image segmentation. In the second phase of the proposed method, the proposed algorithm is used to cluster scanned image images of COVID-19 patients. Implementation of the proposed technique on CT scan images of patients shows that the similarity index of the proposed method is 98.36%, accuracy is 98.45%, and sensitivity is 98.37%. The proposed algorithm is more accurate in diagnosing COVID-19 patients than the falcon algorithm, the spotted hyena optimiser (SHO), the Grasshopper optimisation algorithm (GOA), the grey wolf optimisation algorithm (GWO), and the black widow optimisation algorithm (BWO).
Açık Erişim Tarihi
[dc.date.available]
2023-05-23
Yayıncı
[dc.publisher]
International Journal of Nanotechnology
Dil
[dc.language.iso]
English
Konu Başlıkları
[dc.subject]
meta-heuristic algorithms
Konu Başlıkları
[dc.subject]
FMO
Konu Başlıkları
[dc.subject]
fishier mantis optimiser
Konu Başlıkları
[dc.subject]
COVID 19 disease
Konu Başlıkları
[dc.subject]
coronavirus
Konu Başlıkları
[dc.subject]
clustering
Tek Biçim Adres
[dc.identifier.uri]
https://hdl.handle.net/20.500.14081/1905
ISSN
[dc.identifier.issn]
1475-7435
Dergi
[dc.relation.journal]
International Journal of Nanotechnology
Dergi Sayısı
[dc.identifier.issue]
1-4
DOI
[dc.identifier.doi]
10.1504/IJNT.2023.131111
Orcid
[dc.identifier.orcid]
0000-0001-9875-4860
Bitiş Sayfası
[dc.identifier.endpage]
45
Başlangıç Sayfası
[dc.identifier.startpage]
25
Dergi Cilt
[dc.identifier.volume]
20
Tam Metin İndirmek için tıklayın Ön izleme
Görüntülenme Sayısı ( Şehir )
Görüntülenme Sayısı ( Ülke )
Görüntülenme Sayısı ( Zaman Dağılımı )
Görüntülenme
2
17.07.2023 tarihinden bu yana
İndirme
1
17.07.2023 tarihinden bu yana
Son Erişim Tarihi
01 Eylül 2023 11:20
Google Kontrol
Tıklayınız
algorithm proposed optimisation patients segmentation method mantis optimiser images intelligent COVID-19 technique accuracy sensitivity accurate diagnosing spotted falcon Grasshopper similarity hunting modelling formulated reduce diagnosis behaviour insects create fishier second cluster scanned increase automated Implementation
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms