Detaylı Arama

İptal
Bulunan: 2 Adet 0.003 sn
- Eklemek veya çıkarmak istediğiniz kriterleriniz için 'Dahil' / 'Hariç' seçeneğini kullanabilirsiniz. Sorgu satırları birbirine 'VE' bağlacı ile bağlıdır.
- İptal tuşuna basarak normal aramaya dönebilirsiniz.
Filtreler
Richards’s curve induced Banach space valued multivariate neural network approximation

SEDA KARATEKE

Makale | 2022 | Arabian Journal of Mathematics

Here, we present multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or RN , N ∈ N, by the multivariate normalized, quasi-interpolation, Kantorovichtype and quadrature-type neural network operators. We examine also the case of approximation by iterated operators of the last four types. These approximations are achieved by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high-order Fréchet derivatives. Our multivariate operators are defined using a multidimensional density function induced by t . . .he Richards’s curve, which is a generalized logistic function. The approximations are pointwise, uniform and L p. The related feed-forward neural network is with one hidden layer Daha fazlası Daha az

Compression of images with a mathematical approach based on sine and cosine equations and vector quantization (VQ)javascript:;

Javad Rahebi

Makale | 2023 | Springer

Compressing the image causes less memory to be used to store the images. Compressing images increases the transmission speed of compressed images in the network. Vector quantization (VQ) is one of the image compression methods. The challenge of the vector quantization method for compression is the non-optimization of the codebooks. Codebook optimization increases the quality of compressed images and reduces the volume of compressed images. Various methods of swarm intelligence and meta-heuristics are used to improve the vector quantization algorithm, but using meta-heuristic methods based on mathematical sciences has less history. T . . .his paper uses an improved sine–cosine algorithm (SCA) version to optimize the vector quantization algorithm and reduce the compression error. The reason for using the SCA algorithm in image compression is the balance between the search for exploration and exploitation search by sine and cosine functions, which makes it less likely to get caught in local optima. The proposed method to reduce the calculation error of the SCA algorithm uses spiral trigonometric functions and a new mathematical helix. The proposed method searches for optimal solutions with spiral and snail searches, increasing the chances of finding more optimal solutions. The proposed method aims to find a more optimal codebook by the improved version of SCA in the VQ compression algorithm. The advantage of the proposed method is finding optimal codebooks and increasing the quality of compressed images. The proposed method implementing in MATLAB software, and experiments showed that the proposed method’s PSNR index improves the VQ algorithm’s ratio by 13.73%. Evaluations show that the proposed method’s PSNR index of compressed images is higher and better than PBM, CS-LBG, FA-LBG, BA-LBG, HBMO-LBG, QPSO-LBG, and PSO-LBG. The result shows that the proposed method (or ISCA-LBG) has less time complexity than HHO and WOA compression algorithms.Compressing the image causes less memory to be used to store the images. Compressing images increases the transmission speed of compressed images in the network. Vector quantization (VQ) is one of the image compression methods. The challenge of the vector quantization method for compression is the non-optimization of the codebooks. Codebook optimization increases the quality of compressed images and reduces the volume of compressed images. Various methods of swarm intelligence and meta-heuristics are used to improve the vector quantization algorithm, but using meta-heuristic methods based on mathematical sciences has less history. This paper uses an improved sine–cosine algorithm (SCA) version to optimize the vector quantization algorithm and reduce the compression error. The reason for using the SCA algorithm in image compression is the balance between the search for exploration and exploitation search by sine and cosine functions, which makes it less likely to get caught in local optima. The proposed method to reduce the calculation error of the SCA algorithm uses spiral trigonometric functions and a new mathematical helix. The proposed method searches for optimal solutions with spiral and snail searches, increasing the chances of finding more optimal solutions. The proposed method aims to find a more optimal codebook by the improved version of SCA in the VQ compression algorithm. The advantage of the proposed method is finding optimal codebooks and increasing the quality of compressed images. The proposed method implementing in MATLAB software, and experiments showed that the proposed method’s PSNR index improves the VQ algorithm’s ratio by 13.73%. Evaluations show that the proposed method’s PSNR index of compressed images is higher and better than PBM, CS-LBG, FA-LBG, BA-LBG, HBMO-LBG, QPSO-LBG, and PSO-LBG. The result shows that the proposed method (or ISCA-LBG) has less time complexity than HHO and WOA compression algorithms Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms