A data-driven analysis of renewable energy management: a case study of wind energy technology

  • Yazar FATMA ALTUNTAŞ
  • Yayın Türü Makale
  • Yayın Yılı 2023
  • DOI 10.1007/s10586-023-03966-
  • Yayıncı Springer
  • Tek Biçim Adres https://hdl.handle.net/20.500.14081/1778

Renewable energy management is critical for obtaining a significant number of practical benefits. Wind energy is one of the most important sources of renewable energy. It is extremely valuable to manage this type of energy well and monitor its development. Data-driven analysis of wind energy technology provides essential clues for energy management. Patent documents are extensively used to follow technology development and find exciting patterns. Patent analysis is an excellent way to conduct a data-driven analysis of the technology under concern. This study aims to define concepts related to wind energy technologies and cluster these concepts to manage wind energy well in practice. Although many efforts have been made in the literature on wind energy, no study defines the concepts related to wind energy technologies and clusters these concepts. This study proposes a text mining and clustering-based patent analysis approach to overcome the limitations of previous studies. Data-driven analysis collects and assesses patent documents related to wind energy technologies. Patent documents are collected from the United States Patent and Trademark Office. Text mining is applied to the abstracts of patent documents, and the k-means clustering algorithm is utilized to determine the distribution of the keywords among the clusters. The results of this study show that the contents of the patent documents are mostly related to the tower, and the propeller blades placed at the top of the tower should rotate smoothly with the wind speed for better energy production.

Görüntülenme
32
24.02.2023 tarihinden bu yana
İndirme
1
24.02.2023 tarihinden bu yana
Son Erişim Tarihi
04 Aralık 2023 08:06
Google Kontrol
Tıklayınız
energy documents analysis Patent concepts related patent technologies technology mining Data-driven development clusters management manage Office United Trademark States Renewable collected applied assesses collects studies previous limitations overcome approach clustering-based abstracts propeller production better smoothly
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser AdıA data-driven analysis of renewable energy management: a case study of wind energy technology
YazarFATMA ALTUNTAŞ
Yayın Yılı2023
Yayın TürüMakale
ÖzetRenewable energy management is critical for obtaining a significant number of practical benefits. Wind energy is one of the most important sources of renewable energy. It is extremely valuable to manage this type of energy well and monitor its development. Data-driven analysis of wind energy technology provides essential clues for energy management. Patent documents are extensively used to follow technology development and find exciting patterns. Patent analysis is an excellent way to conduct a data-driven analysis of the technology under concern. This study aims to define concepts related to wind energy technologies and cluster these concepts to manage wind energy well in practice. Although many efforts have been made in the literature on wind energy, no study defines the concepts related to wind energy technologies and clusters these concepts. This study proposes a text mining and clustering-based patent analysis approach to overcome the limitations of previous studies. Data-driven analysis collects and assesses patent documents related to wind energy technologies. Patent documents are collected from the United States Patent and Trademark Office. Text mining is applied to the abstracts of patent documents, and the k-means clustering algorithm is utilized to determine the distribution of the keywords among the clusters. The results of this study show that the contents of the patent documents are mostly related to the tower, and the propeller blades placed at the top of the tower should rotate smoothly with the wind speed for better energy production.
Açık Erişim Tarihi2023-01-21
YayıncıSpringer
DilENGLISH
Konu BaşlıklarıPatent documents
Konu BaşlıklarıText mining
Konu BaşlıklarıCluster analysis
Konu BaşlıklarıRenewable energy
Konu BaşlıklarıWind energy technologies
Tek Biçim Adreshttps://hdl.handle.net/20.500.14081/1778
ISSN13867857
DOI10.1007/s10586-023-03966-
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms