Human retinal optic disc detection with grasshopper optimization algorithm

A growing number of qualified ophthalmologists are promoting the need to use computer-based retinal eye processing image recognition technologies. There are differ- ent methods and algorithms in retinal images for detecting optic discs. Much attention has been paid in recent years using intelligent algorithms. In this paper, in the human retinal images, we used the Grasshopper optimization algorithm to implement a new automated method for detecting an optic disc. The clever algorithm is influenced by the social nature of the grasshopper, the intelligent Grasshopper algorithm. Include this algorithm; the population contains the grasshoppers, each of which has a common luminance or exercise score. In this method, two-by-two insects are compared, so it could be shown that less attractive insects shift towards more attractive insects. Finally, one of the most attractive insects is selected, and this insect gives an optimum solution to the problem. Here, we used the light intensity of the retinal pixels instead of grasshopper illuminations. Accord- ing to local variations, the effect of these insects also indicates different light intensity values in images. Since the brightest area “represents the optic disc in retinal images, all insects travel to the brightest area, which leads to the determined position for an optic disc in the image. The performance was evaluated on 210 images, reflecting three Open to the public and sequentially distributed datasets DIARETDB1 89 images, STARE 81 images, and DRIVE 40 images. The results of the proposed algorithm implementation give a 99.51% accuracy rate in the DiaRetDB1 dataset, 99.67% in the STARE dataset, and 99.62% in the DRIVE dataset. The results of the implementation show the strong capacity and accuracy of the proposed algorithm for detecting the optic disc from retinal images. Also, the recorded time required for (OD) detection in these images is180.14 s for the DiaRetDB1, 65.13s for STARE, and 80.64s for DRIVE, respectively. These are average
values for the times.

Süresiz Ambargo
Görüntülenme
71
23.03.2022 tarihinden bu yana
İndirme
1
23.03.2022 tarihinden bu yana
Son Erişim Tarihi
17 Eylül 2024 02:14
Google Kontrol
Tıklayınız
Tam Metin
Süresiz Ambargo
Detaylı Görünüm
Eser Adı
(dc.title)
Human retinal optic disc detection with grasshopper optimization algorithm
Yazar
(dc.contributor.author)
Cevat Rahebi
Yayın Yılı
(dc.date.issued)
2022
Tür
(dc.type)
Makale
Özet
(dc.description.abstract)
A growing number of qualified ophthalmologists are promoting the need to use computer-based retinal eye processing image recognition technologies. There are differ- ent methods and algorithms in retinal images for detecting optic discs. Much attention has been paid in recent years using intelligent algorithms. In this paper, in the human retinal images, we used the Grasshopper optimization algorithm to implement a new automated method for detecting an optic disc. The clever algorithm is influenced by the social nature of the grasshopper, the intelligent Grasshopper algorithm. Include this algorithm; the population contains the grasshoppers, each of which has a common luminance or exercise score. In this method, two-by-two insects are compared, so it could be shown that less attractive insects shift towards more attractive insects. Finally, one of the most attractive insects is selected, and this insect gives an optimum solution to the problem. Here, we used the light intensity of the retinal pixels instead of grasshopper illuminations. Accord- ing to local variations, the effect of these insects also indicates different light intensity values in images. Since the brightest area “represents the optic disc in retinal images, all insects travel to the brightest area, which leads to the determined position for an optic disc in the image. The performance was evaluated on 210 images, reflecting three Open to the public and sequentially distributed datasets DIARETDB1 89 images, STARE 81 images, and DRIVE 40 images. The results of the proposed algorithm implementation give a 99.51% accuracy rate in the DiaRetDB1 dataset, 99.67% in the STARE dataset, and 99.62% in the DRIVE dataset. The results of the implementation show the strong capacity and accuracy of the proposed algorithm for detecting the optic disc from retinal images. Also, the recorded time required for (OD) detection in these images is180.14 s for the DiaRetDB1, 65.13s for STARE, and 80.64s for DRIVE, respectively. These are average values for the times.
Açık Erişim Tarihi
(dc.date.available)
2022-03-03
Yayıncı
(dc.publisher)
Springer
Dil
(dc.language.iso)
En
Konu Başlıkları
(dc.subject)
Grasshopper optimization algorithm
Konu Başlıkları
(dc.subject)
Retinal images
Konu Başlıkları
(dc.subject)
Optic disc detection
Tek Biçim Adres
(dc.identifier.uri)
https://hdl.handle.net/20.500.14081/1472
ISSN
(dc.identifier.issn)
1380-7501
Dergi
(dc.relation.journal)
Multimedia Tools And Applications
Dergi Sayısı
(dc.identifier.issue)
17
Esere Katkı Sağlayan
(dc.contributor.other)
Rahebi, Javad
Esere Katkı Sağlayan
(dc.contributor.other)
Al Shalchi, Nassrallah Faris Abdukader
DOI
(dc.identifier.doi)
10.1007/s11042-022-12838-8
Orcid
(dc.identifier.orcid)
0000-0001-9875-4860
Bitiş Sayfası
(dc.identifier.endpage)
24955
Başlangıç Sayfası
(dc.identifier.startpage)
24937
Dergi Cilt
(dc.identifier.volume)
81
wosquality
(dc.identifier.wosquality)
Q2
wosauthorid
(dc.contributor.wosauthorid)
DNF-7937-2022
Department
(dc.contributor.department)
Yazılım Mühendisliği
Wos No
(dc.identifier.wos)
WOS:000771379200001
Veritabanları
(dc.source.platform)
Wos
Veritabanları
(dc.source.platform)
Scopus
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms