A Meta-Heuristic Algorithm Based on the Happiness Model

Recent work has attempted to determine the appropriate global minimum for complex problems. The paper presents a population and direct-based swarm optimization algorithm called the happiness optimizer (HPO) algorithm. An HPO algorithm is designed based on personal behavior and demonstrated in 30 and 100 dimensions on benchmark functions. The model includes four questions: “what do you want?”, “what do you have?”, “what do others have?”, and “what happened?”, which guide the development of a happiness behavior model. By considering the balancing between exploration and exploitation operators in the search space problem, efficiency, robustness, and stability were demonstrated for synthetic and real cases. For comparison, our proposed algorithm and some well-known algorithms will be 30 times applied on the benchmark functions and then compared with statistical value and Wilcoxon signed-rank test. As a consequence, the performance, reliability, and stability of our work have been demonstrated better than the others. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Görüntülenme
79
27.02.2023 tarihinden bu yana
İndirme
1
27.02.2023 tarihinden bu yana
Son Erişim Tarihi
30 Haziran 2024 14:39
Google Kontrol
Tıklayınız
Tam Metin
Detaylı Görünüm
Eser Adı
(dc.title)
A Meta-Heuristic Algorithm Based on the Happiness Model
Yayıncı
(dc.publisher)
Book Series
Yazar
(dc.contributor.author)
Aref Yelghı
Açık Erişim Tarihi
(dc.date.available)
2023-01-01
Yayın Yılı
(dc.date.issued)
2023
Tek Biçim Adres
(dc.identifier.uri)
https://hdl.handle.net/20.500.14081/1780
Dil
(dc.language.iso)
En
Konu Başlıkları
(dc.subject)
Evolutionary computing
Konu Başlıkları
(dc.subject)
Multimodal problem
Konu Başlıkları
(dc.subject)
Optimization algorithm
Konu Başlıkları
(dc.subject)
Swarm intelligence
Tür
(dc.type)
Makale
ISSN
(dc.identifier.issn)
1860949X
DOI
(dc.identifier.doi)
10.1007/978-3-031-16832-1_6
Özet
(dc.description.abstract)
Recent work has attempted to determine the appropriate global minimum for complex problems. The paper presents a population and direct-based swarm optimization algorithm called the happiness optimizer (HPO) algorithm. An HPO algorithm is designed based on personal behavior and demonstrated in 30 and 100 dimensions on benchmark functions. The model includes four questions: “what do you want?”, “what do you have?”, “what do others have?”, and “what happened?”, which guide the development of a happiness behavior model. By considering the balancing between exploration and exploitation operators in the search space problem, efficiency, robustness, and stability were demonstrated for synthetic and real cases. For comparison, our proposed algorithm and some well-known algorithms will be 30 times applied on the benchmark functions and then compared with statistical value and Wilcoxon signed-rank test. As a consequence, the performance, reliability, and stability of our work have been demonstrated better than the others. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Dergi Cilt
(dc.identifier.volume)
1069
Esere Katkı Sağlayan
(dc.contributor.other)
Yelghi, Aref
Bitiş Sayfası
(dc.identifier.endpage)
126
Başlangıç Sayfası
(dc.identifier.startpage)
109
Department
(dc.contributor.department)
Bilgisayar Mühendisliği
wosauthorid
(dc.contributor.wosauthorid)
CHZ-0386-2022
Dergi
(dc.relation.journal)
Studies in Computational Intelligence
Veritabanları
(dc.source.platform)
Scopus
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms