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Abstract
This study compares the performances of neural network and Black-Scholes models in pricing BIST30 (Borsa Istanbul) index call and put
options with different volatility forecasting approaches. Since the volatility is the key parameter in pricing options, GARCH (Generalized
Autoregressive Conditional Heteroskedasticity), implied volatility, historical volatility, and implied volatility index (VBI) are used to determine
the best volatility approach for pricing options according to moneyness and time-to-maturity dimensions. The paper also includes a subsample
analysis in which the pricing performance of the models are evaluated during the turbulent periods. Overall results indicate that neural network
outperforms Black-Scholes during tranquil times while Black-Scholes outperforms neural network during turbulent periods for call options. For
put options, the Black-Scholes model is the best model during tranquil periods while neural network is the best model during turbulent periods.
Copyright © 2021, Borsa İstanbul Anonim Şirketi. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

JEL classification: C45; G13; G14

Keywords: BIST index options; Black-Scholes; Neural network; Volatility
1. Introduction

As the liberalization and connectedness of the international
financial markets have increased, risks to which economic
agents are exposed have increased and changed rapidly. The
pricing of financial derivatives and, therefore, options to
manage and survive in these increasingly volatile markets has
gained importance and led to rapid developments in both the
literature and practice. Even though the first studies on the
pricing of options appeared in the early 1900s, the seminal
work of Black and Scholes (BS; 1972) became a cornerstone in
the option pricing literature and in the trading of options
because it is widely accepted and used by the practitioners in
financial markets. Since then, many efforts have been made to
relax the unrealistic assumptions of the model, such as Cox
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et al. (1979), Rendleman and Bartter (1979), Rubinstein
(1983), Boyle (1988), Hull and White (1987), Scott (1987),
Naik (1993), Amin and Ng (1993), Duan (1995), and Scott
(2002). The assumption of constant volatility of the underly-
ing asset is found to be the most important assumption, re-
ported by many studies that analyze the mispricing of the BS
model—such as Macbeth and Merville (1979), Dumas et al.
(2002), and Poon (2005)—which needs to be relaxed in
order to obtain more accurate pricing formulas. For parametric
models, how the volatility is modeled—such as a continuous
stochastic process or as a jump-diffusion process— played a
crucial role in whether models are successful. However, this
increased the mathematical complexity of the models, which
limited their understanding and use by the majority of practi-
tioners. After the development of many different versions of
the BS option pricing model, which addresses the different
assumptions of the model, the use and test of artificial neural
networks (NNs) in pricing options has attracted the attention of
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Z. _Iltüzer Borsa _Istanbul Review xxx (xxxx) xxx

+ MODEL
researchers in finance as an alternative pricing model that re-
quires no assumptions about the variables and their
relationship.1

NNs are a machine learning technique that has been widely
used in many disciplines and industries for the past 20 years
because of increasing data availability and technological de-
velopments in terms of both hardware and software. The ma-
jority of the research in this area provides strong evidence of
the superior performance of NNs relative to the BS model.
Malliaris and Salchenberger (1993), Hutchinson et al. (1994),
Gradojevic et al. (2009), Garcia and Gencay (2000), Yang et al.
(2017), and Fadda (2020) compare the performance of NNs to
the BS model for S&P index options or futures options, and
they all reach the conclusion that the NNs outperform the BS
model, but that a few of them report findings that indicate
better performance by BS for short-term in-the-money options.
The success of NNs in pricing options is also reported for other
mature stock market index options. Yao et al. (2000) examine
the pricing of Nikkei 225 index options or futures options with
NNs and the BS model and provide evidence that NNs have
better performance in the pricing of in-the-money and out-of-
the-money options whereas the BS model has better perfor-
mance in the pricing of at-the-money options. Amilon (2003)
analyzes the performance of NNs and the BS model for
Swedish stock index options in which both the implied and the
historical volatility estimations are used as volatility inputs for
the models and provides strong evidence of the better perfor-
mance by NNs with the implied volatility at all moneyness
levels. Anders et al. (1998) performed a comparative analysis
of the DAX index options by applying a statistical inference
technique to determine the optimal NN architecture and re-
ported that NNs outperformed the BS model. Bennell and
Sutcliffe (2005) compare the performance of NNs with the
BS model for FTSE 100 index options and reach conclusions
similar to those from the S&P index options, which is that NNs
achieve superior performance in pricing at-the-money and out-
of-the money options but the BS model has better performance
in pricing in-the-money options. To the best of my knowledge,
Lin and Yeh (2005) offer the only study that compares the
pricing performance of NNs with that of the BS model for an
emerging stock market index option. Their findings provide
evidence that the BS model performs better than the NN model
in pricing Taiwan stock index options. Wang (2009a), Lin and
Yeh (2009), Tseng et al. (2008), and Wang et al. (2012)
examine the pricing of Taiwan stock index options with NNs
under different volatility estimations, such as historical vola-
tility, implied volatility, and symmetric and asymmetric
GARCH < Generalized Autoregressive Conditional
Heteroskedasticity > volatility without making any comparison
1 Amilon (2003), Anders et al. (1998), Bennell and Sutcliffe (2005), Daglish
(2003), Fadda (2020), Garcia and Gencay (2000), Gaspar et al. (2020),
Gradojevic et al. (2009), Hutchinson et al. (1994), İltüzer Samur and Temur
(2009), Ivas,cu (2021), Lajbcygier (2004), Lin and Yeh (2005, 2009),
Malliaris and Salchenberger (1993), Morelli et al. (2004), Tseng et al. (2008),
Wang (2009a, 2009b), Wang et al. (2012), Yadav (2021), Yang et al. (2017),
and Yao et al. (2000).
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to the BS model. Some report that the GARCH family models
lead to better pricing performance in NNs and others show that
the implied volatility approach gives better performance.

Overall, the literature demonstrates the superior perfor-
mance of NNs in pricing options compared to the BS model,
especially for at-the-money and out-of-the-money options on
mature stock market indexes. However, it is not known
whether the reported outperformance of NNs is also valid for
options in emerging stock markets because of the low number
of studies on this topic. This study fills this gap by comparing
the pricing performances of NNs with that of the BS model
for call and put BIST < Borsa Istanbul> 30 index options. To
the best of my knowledge, this is the first study that attempts
to perform a NN in pricing the options of Turkish stock
market index and compares its performance with that of the
traditional BS model. Because volatility is the key input for
pricing options, the study also examines the effects of using
different volatility forecasting approaches—that is, implied
volatility, short- and long-term historical volatility, and
GARCH volatility—on the pricing performance of the
models. More specifically, this study answers the following
questions: Is the nonparametric artificial NN model or the
traditional BS model better at pricing BIST 30 index options?
Which volatility forecasting approaches increase the pricing
performance of the models and how do they affect the pricing
behavior of models? And does the performance of the models
vary according to moneyness and time to maturity of the
options? Determination of the best pricing model for call and
put options will help to make hedging, portfolio investment,
and risk management decisions more effective by applying
different trading strategies to underpriced and overpriced
options in the market.

Section 2 provides a concise explanation of the models,
details of the methodology, and a description of the data.
Empirical results are given in Section 3. A summary and
general conclusions are presented in Section 4.

2. The models, methodology, and data
2.1. Artificial neural network (ANN)
ANNs, a type of neural network, are information processing
models that learn from the sample data. The most commonly
used kind of ANN is the multilayer perceptron (MLP). The
simplest architecture of an MLP is depicted in Fig. 1. The in-
puts Xi s are fed into the first layer (the input layer), and the
outputs Yj of the network are given in the last layer (the output
layer). Between the input and the output layers are hidden
layers with a number of neurons, which need to be discovered
during learning.

The basic process unit of a MLP architecture is a neuron,
which is connected with a certain weight, w, to every neuron in
the next layer, which implies that MLPs are fully connected.
Each neuron uses a nonlinear activation function ø that trans-
forms the weighted signals and passes it on to the subsequent
layer. In this way, the inputs Xi are fed forward to the hidden
layer with weights wik and the neurons in the hidden layer, hk



Fig. 1. A single-hidden layer MLP < Multilayer Perceptron > architecture.

2 The option data was obtained from datastore.borsaistanbul.com.
3 The TRLIBOR historical data was obtained from www.trlibor.org.
4 Python and relevant libraries are used for building and estimating the

network parameters.
5 WUITUR is available at https://fred.stlouisfed.org/series/WUITUR/.
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as shown in Equation (1), are fed forward to the output layer,
Yj, with weights wkj as shown in Equation (2).

hk=ø(∑
i

wikxi+ b1) (1)

yj=ø(∑
k

wkjhk+ b2) (2)

where b1 and b2 are the bias terms for the hidden layer and the
output layer, respectively. The activation function used in the
study is the rectified linear unit function, ReLu, which is given
in Equation (3), for both the hidden layer and the output layer.
The ReLu is one of the most popular activation functions used
in wide variety of NN applications in recent years and found to
yield better performance than other activation functions, that is,
hyperbolic tangent and sigmoid functions (Glorot et al., 2011;
Zaheer & Shaziya, 2018).

ø(z)=max{0, z} (3)
The network outputs, Yj, are compared to the observed

values, tj, by estimating the sum of squared errors as given in
Equation (4), and then the errors are propagated backward so
that weights, wik and wkj, are updated in order for the total error
to be minimized.

L=1
2
∑
j

(tj − Yj)2 (4)

In the study, two NN models are built as in Equations (5)
and (6). The first model uses the inputs and outputs of the
BS model, where St is the spot price of the index at time t, X
is the exercise price of the option, σt is the volatility at time
t, rt is the risk-free interest rate at time t, and T− t is the time
to maturity as the inputs and call c (or put p) price as the
output.

ct= f (St,X, rt , T − t, g(σt)) (5)
3

where g(σt) indicates the results of the different volatility
forecasting approaches detailed in Section 2.3. The second
model as shown in Equation (6) is built by following
Hutchinson et al. (1994), in which f is homogeneous of degree
one in X and St, and the network takes St

X as the input, instead of
taking St and X as separate inputs, and map it to the option
price divided by the exercise price ct(pt)

X .

ct
X
= f (St

X
, rt, T − t, g(σt)) (6)

The European BIST 30 index call and put options data
between March 2017 and August 2021 is used in the analysis.2

The BIST 30 daily closing prices between January 2016 and
August 2021 is used for the volatility estimations detailed in
Section 2.3 when it is necessary, and interpolation of two
closest interbank rates (TRLIBOR) to the maturity of the op-
tion are used as approximations for the risk-free rate in the
Turkish economy.3 The NNs whose input and outputs repre-
sented by Equations (5) and (6) are trained in batch mode, and
the limited-memory Broyden–Fletcher–Goldfarb–Shanno al-
gorithm (LBFGS) is used for optimization to adjust the
network weights.4 For the model selection, cross-validation is
applied by splitting the data into three parts: training, valida-
tion, and test sets. Data between March 2017 and June 2020 are
used for training, data between July and December 2020 are
used for validation, and data between January and August 2021
are used for the test set. An approach that splits data into train,
test, and validation periods, similar to that in Gu et al. (2020),
is followed in the study. Additionally, in order to evaluate the
model performance in periods of turmoil, a subsample period
covering March 2017 and April 2018 is used. The World
Uncertainty Index (WUI) developed in Ahir et al. (2018) for
Turkey (WUITUR) between March 2017 and August 2021 is
used to determine the period of turmoil in the full sample.5

According to the WUITUR, the full sample period includes a
peak in April 2018. Therefore, the model performance is also
evaluated for its predictive ability in April 2018. The data
between March 2017 and December 2017 are used for training
for this purpose, the data between January and March 2018 are
used for validation, and the data for April 2018 are used for the
test set in the subsample.

The network architecture with the lowest validation root

mean squared error— RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n ∑n
i=1

(ci − ĉi)2
√

—is selected

as the optimal architecture, where ci is the closing price of the
call (put) option, and ĉi is the option price predicted by the NN
model. The test set does not have any influence on the choice
of network architecture and is used only for testing the out-of-
the-sample performance of the models. To avoid overfitting the
training data, early stopping is applied. That is, the model is

http://datastore.borsaistanbul.com
http://www.trlibor.org
https://fred.stlouisfed.org/series/WUITUR/
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trained on the training data, and the performance improvement
is monitored in the validation data. When the error starts to
increase in the validation set, the early stopping method stops
training and prevents overfitting.
2.2. Black-Scholes option pricing model
ct=StN(d1) −Xe−rt(T−t)N(d2) (7)

pt=Xe−rt(T−t)N(−d2) − StN(−d1) (8)

d1=
ln(StX)+ (rt + g(σt)2

2 )(T − t)
g(σt)

̅̅̅̅̅̅̅̅̅̅
T − t

√ (9)

d2=d1 − g(σt)
̅̅̅̅̅̅̅̅̅̅
T − t

√ (10)
where N(x) is the cumulative probability distribution, and g(σt)
is the volatility estimates from different volatility forecasting
approaches detailed in Section 2.3.
2.3. Volatility forecasts

2.3.1. Historical volatility
Historical volatility forecasts are basically the annualized

standard deviation of daily logarithmic return data Rt =
ln( St

St−1), as shown in Equation (11).6 Five versions of historical
volatility are estimated based on how far the data covers the
past observations, that is, 360 days, 30 days, or 10 days for
estimations based on calendar days and 21 and 252 days for
estimations based on trading days, which reflects the short- and
relatively long-term tendencies of the stock market.

σ̂ t+1=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n− 1
∑i=t

i=t−(n−1)
(Ri −R)2

̅̅̅̅̅̅̅̅
360

√√√√ (11)

where R is the mean of daily logarithmic returns, n equals 10
days, 30 days, 360 days, 21 days, and 252 days for five
different historical volatility forecasts, denoted g(σt) = σ̂10

t ,
g(σt) = σ̂30

t , g(σt) = σ̂360
t , g(σt) = σ̂21

t , and g(σt) = σ̂252
t .

The choice of 10- and 30-day data is based on the study by
Amilon (2003). Additionally, historical volatility based on the
most recent one-year data is estimated to examine whether the
performance of the models increases by using volatility fore-
casts that take into account the relatively long-term aspects of
the underlying asset.

2.3.2. The GARCH model
The GARCH model is proposed by Bollerslev (1986), in

which the volatility clustering and heteroskedasticity observed
in the stock market returns are taken into account. The
GARCH(1,1) model is:
6 Annualized by 252-day for trading day calculations.

4

Rt = μ+ εt

εt = σtzt, zt ∼ N(0,1)
σt = ω+ αε2t−1 + βσ2t−1

(12)

In the study, the parameters of Equation (12) are estimated
by using the most recent one-year logarithmic returns of the
BIST 30 index, Rt, before the date of the forecast. Then, the
model is used for a volatility forecast for date t and annualized
by multiplying it by

̅̅̅̅̅̅̅̅
360

√
. For each day, the sample data are

rolled over one day, and the same procedure is repeated. The
volatility forecasts of the GARCH (1,1) model are
g(σt) = σ̂garch

t = σt
̅̅̅̅̅̅̅̅
360

√
for date t.

2.3.3. Implied volatility
The implied volatility forecast, σ̂ implied

t , is obtained by cal-
ibrating the volatility parameter of the BS model to obtain a
perfect fit for the at-the-money call (put) closing price at time t,
which is then used for volatility forecasts of the other options
traded in the market on the same day. That is, g(σt) = σ̂ implied

t .
When call (put) options whose moneyness equal 1 on the day t
are not available, the option whose moneyness is closest to 1 is
chosen for calibration. The implied volatility of the at-the-
money (ATM) options are widely accepted in the literature
as the true volatility of the underlying asset reflected in the
option prices (Chance et al., 2017).

2.3.4. VBI
The implied volatility index for the Turkish option market

(VBI) developed by Sensoy and Omole (2018), σ̂vbi
t , is used for

volatility input for t. They provide a guideline for the parameter
selection procedure when estimating VIX for the Turkish op-
tion market, which takes into account the market microstruc-
ture, especially the relative illiquidity of the Turkish stock
market compared to developed markets, for which VIX is
primarily constructed. For details on the estimation and pro-
cedure, see Sensoy and Omole (2018).

3. Empirical analysis and results

In this section, we use eight different volatility forecasting
approaches to compare the NN models, represented by Equa-
tions (5) and (6), and the traditional BS model for pricing BIST
30 index call and put options. The models are evaluated based
on the out-of-sample RMSEs (Root Mean Squared Error) by
grouping the options according to moneyness and the time to
maturity. We perform the Diebold-Mariano test to check the
statistical significance of the difference in the predictive ac-
curacy of the models. The options are grouped into three cat-
egories based on their moneyness, St/K, by following similar
approaches by Gradojevic et al. (2009), Tseng et al. (2008),
and Lin and Yeh (2009). The call options whose moneyness is
between 0.97 and 1.03 are grouped together as at-the-money
(ATM) options (ATM for put options), those whose money-
ness is higher than 1.03 are grouped as in-the-money (ITM)
options (OTM for put options), and those whose moneyness is
lower than 0.97 are grouped as out-of-the-money (OTM) op-
tions (ITM for put options). Following Fadda (2020),
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according to the time-to-maturity dimension, options whose
time to maturity is up to one month are grouped as short-term
options, and options whose time to maturity is between one and
three months are grouped as medium-term options, and options
with a time to maturity of more than three months are grouped
as long-term options.
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Table 1 presents the out-of-sample RMSEs of the models
for call options for both moneyness and the time to maturity.
According to the results, for OTM call options, the NN2
model with implied volatility is the best model as it has the
smallest RMSE, and the NN models outperform BS with
every volatility forecast method. Among the ATM options,
the NN2 model with ten-day historical volatility is the best
model, closely followed by the NN1 model with implied
volatility and the NN2 model with the implied volatility index
VBI. Among the ITM options, the best model is the NN2
model with implied volatility, and the NN2 model performs
better than BS and NN1 with every volatility forecast method.
Another striking result is that all models have worse perfor-
mance for ITM options than for OTM and ATM options, with
RMSEs almost four or five times larger, which implies that
the pricing of ITM options has higher pricing errors than
pricing OTM and ATM options. In terms of the time to
maturity, the NN2 model with implied volatility is the best
model for both short- and medium-term options, whereas the
NN1 model with VBI is the best model for long-term options.
Moreover, most of the time NN2 has better performance than
BS and NN1 with every volatility forecasting approach at all
time-to-maturity dimensions. The overall results imply that
the NN2 model is a better way to price call options than BS
and NN1 models.

To show changes in the model performance in periods of
turmoil, Table 2 presents RMSEs of the models for pricing
options traded in April 2018, which is considered a more tur-
bulent period than other months according to the WUI in the
full sample, for each moneyness and time-to-maturity dimen-
sion. For OTM and ATM options, the BS model with 30- and
21-day historical volatility is the best and has the lowest
RMSEs. For every volatility forecast method most of the time,
BS has better performance than NN1 and NN2. Among the
ITM options, the NN2 model with 360-day historical volatility
has the best performance, closely followed by NN2 with 30-
day historical volatility. When pricing performance is evalu-
ated according to the time-to-maturity dimension, the best
model is BS with 360- and 252-day historical volatility for
short-term options, BS with 30-, 21-, and 252-day historical
volatility for medium-term options, and NN2 with ten-day
historical volatility for long-term options. Additionally, BS
performs better than NN1 and NN2 with every volatility
forecasting model for short-term options, which implies that
BS is the best model for pricing short-term call options in times
of turmoil regardless of which volatility forecasting method is
used for volatility inputs.
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Figs. 2 and 3 depict the pricing errors, c− ĉ, of the models
according to the moneyness dimension for the full sample and
subsample, respectively, and Figs. 4 and 5 show the pricing
errors of the models according to the time-to-maturity dimen-
sion for the full sample and subsample, respectively.

The figures demonstrate the behavior of the models at
different moneyness levels and at various times to maturity
when different volatility forecasting approaches are used.
Most of the models have bias that either overprice or under-
price the call options. The BS model with implied volatility
underprices ATM and OTM options whereas NN2 with
implied volatility overprices ATM options. BS and NN1 with
GARCH volatility, BS and NN1 with historical volatility
based on the prior 360 days of data, BS with historical
volatility estimated by data for the past 30 and ten days, NN1
with historical volatility estimated by the most recent ten days
of data tend to underprice OTM, ATM, and ITM call options
most of the time.

By contrast, NN2 with historical volatility estimated by the
past 30 and 360 days of data overprices OTM and ATM call
options; BS with historical volatility estimated by the past 21
and 252 trading days of data tend to overprice ATM and OTM
options; NN2 with historical volatility estimated by the past
21 trading days of data and with VBI tend to overprice OTM,
ATM, and ITM call options; and NN1 with VBI tends to
overprice OTM options. In short, BS is biased toward
underpricing ATM and OTM call options with almost every
volatility input, whereas NN1 and NN2 do not have such
consistent underpricing or overpricing bias with different
volatility estimates. The NN1 and NN2 models tend to
overprice call options with some volatility inputs but to un-
derprice with other volatility inputs. The results in Table 1 and
Fig. 2 together indicate that NN2 with historical volatility
estimated by using the past 10 days of data is the best model
for ATM call options, but the model tends to overprice the
options. Therefore, it is important for practitioners to take into
account the effect of this overpricing behavior on their in-
vestment or hedging strategies.

As Turkey is an emerging market and a developing
country, its derivatives market and ecosystem are still at an
early stage of development, shown by the low trading volume
and the use of the BS model to price options, and the majority
of market participants lack the education background to
employ complex and advanced option pricing models.
Therefore, the systemic underpricing of the BS model might
be due to the fact that market participants who use it add a
model risk premium to the price calculated when placing their
order. The same underpricing pattern in BS models as in the
full-sample analysis is found in the subsample results in Fig. 3
according to the moneyness dimension. However, the
consistent overpricing behavior of the NN1 and NN2 model
with every volatility forecast approach for ATM and/or OTM
options is not found in the full-sample analysis, which implies
that NN option pricing models tend to overprice call options
during periods of turmoil.

Figs. 4 and 5 illustrate the pricing errors of the models
according to the time-to-maturity dimension in the full-



Fig. 2. Pricing errors of models according to moneyness for call options: Full sample.
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Fig. 3. Pricing errors of models according to moneyness for call options: Subsample.

Z. _Iltüzer Borsa _Istanbul Review xxx (xxxx) xxx

+ MODEL

8



Fig. 4. Pricing errors of models according to time-to-maturity for call options: Full sample.

Z. _Iltüzer Borsa _Istanbul Review xxx (xxxx) xxx

+ MODEL

9



Fig. 5. Pricing errors of models according to time-to-maturity for call options: Subsample.
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Table 3
Out-of-sample RMSEs of models for put options - full sample.

Panel A: Performance of Models According to Moneyness

IMPLIED GARCH HIS360 HIS30 HIS10 HIS21 HIS252 VBI

BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2

OTM 27.01 26.31 23.86 24.66 53.88 38.29 13.34 36.42 19.29 23.67 48.45 18.46 18.78 29.44 21.56 18.78 36.95 23.55 18.31 35.44 20.05 16.52 24.73 17.28

ATM 23.20 14.79 14.64 15.45 20.59 16.24 8.89 14.66 11.10 20.16 27.25 13.92 16.14 20.03 12.29 16.14 23.44 14.99 13.70 18.89 11.93 13.97 16.13 13.42

ITM 19.86 10.19 13.40 17.90 14.81 14.73 7.69 8.84 8.87 17.85 12.66 9.67 13.60 13.45 12.16 13.60 12.00 15.03 14.11 12.44 10.66 13.00 12.19 8.87

Panel B: Performance of Models According to Time-To-Maturity

SHORT 10.94 11.56 15.31 7.11 13.38 15.60 7.13 12.28 14.20 12.56 20.70 12.24 8.51 11.72 11.92 8.51 14.61 13.56 7.96 9.36 13.06 6.85 14.24 10.38

MEDIUM 25.29 16.91 15.82 20.35 35.20 25.24 9.98 16.90 11.27 21.51 29.57 14.02 16.98 18.73 14.96 16.98 24.21 17.41 15.47 20.40 13.04 15.31 15.41 14.03

LONG 42.28 29.42 23.92 33.70 38.55 25.18 15.41 45.47 11.92 35.36 54.66 19.24 30.05 46.77 20.96 30.05 48.06 25.95 28.40 50.30 18.00 26.82 32.49 18.36

Notes: NN1 and NN2 represent the neural network models whose inputs and outputs are stated in Equations (5) and (6), respectively. BS is the Black-Scholes option pricing model. IMPLIED, GARCH, HIS360,
HIS30, HIS10, HIS21, HIS252, and VBI represent σ̂ implied

t , σ̂garch
t , σ̂360

t , σ̂30
t , σ̂10

t , σ̂21
t , σ̂252

t , and σ̂ vbi
t , respectively. * pricing error of the best model estimated with a certain volatility forecast, such as ARCH, is

statistically significant based on the pricing errors of the other two models according to the Diebold-Mariano test at the 5 percent level. The superscript numbers represent the rank of the best model based on one
volatility forecasting approach compared to the other best models based on other volatility forecasting approaches. For instance, for OTM options, the rank of the models is as follows: 1. BS with 360-day historical
volatility, 2. BS with VBI, 3. BS with 252-day historical volatility, 4. BS with 30-day historical volatility, 5. NN2 with 10-day historical volatility, 6. BS with 21-day historical volatility, 7. BS with implied volatility,
and 8. BS with GARCH. That is, for OTM options, the best model is BS when VBI is used in pricing the options, and it ranks second among other best models when different volatility forecasts are used, which is
represented by a superscript 2, while BS is the best model when the historical volatility forecast based on the past 30 days of data is used, and its rank is four, represented by a superscript 4 among the other best
models when other volatility forecasts are used.

Table 4
Out-of-sample RMSEs of models for put options - subsample.

Panel A: Performance of Models According to Moneyness

IMPLIED GARCH HIS360 HIS30 HIS10 HIS21 HIS252 VBI

BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2 BS NN1 NN2

OTM 1.22 1.22 2.36 1.20 1.27 2.36 1.25 1.37 2.59 1.55 1.65 2.54 1.51 1.30 2.54 1.55 1.78 3.02 1.63 1.47 2.74 1.04 1.30 1.80

ATM 0.60 0.60 0.72 0.84 0.62 0.66 0.93 0.59 0.63 1.13 0.91 0.79 1.09 0.73 0.76 1.13 0.90 0.92 1.31 0.83 0.68 0.71 0.63 0.67

ITM 0.59 0.59 0.54 1.12 0.77 0.55 1.19 0.45 0.37 1.52 1.01 0.48 1.24 0.70 0.49 1.52 1.18 0.73 1.52 0.84 0.42 0.98 0.70 0.58

Panel B: Performance of Models According to Time-To-Maturity

SHORT 0.87 0.65 1.35 0.71 0.73 1.33 0.70 0.71 1.30 0.93 1.02 1.30 0.90 0.78 1.45 0.93 1.09 1.48 0.94 0.96 1.51 0.60 0.78 1.03

MEDIUM 1.69 0.86 0.76 1.25 0.88 0.71 1.40 0.82 0.97 1.69 1.17 1.12 1.54 0.93 0.77 1.69 1.23 1.45 1.90 0.98 0.72 1.08 0.80 0.79

LONG – – – – – – – – – – – – – – – – – – – – – – – –

Notes: NN1 and NN2 represent the neural network models whose inputs and outputs are stated in Equations (5) and (6), respectively. BS is the Black-Scholes option pricing model. IMPLIED, GARCH, HIS360,
HIS30, HIS10, HIS21, HIS252, and VBI represent σ̂ implied

t , σ̂garch
t , σ̂360

t , σ̂30
t , σ̂10

t , σ̂21
t , σ̂252

t , and σ̂ vbi
t , respectively. * pricing error of the best model estimated with a certain volatility forecast, such as ARCH, is

statistically significant based on the pricing errors of the other two models according to the Diebold-Mariano test at the 5 percent level. The superscript numbers represent the rank of the best model based on one
volatility forecasting approach compared to the other best models based on other volatility forecasting approaches. For instance, for OTM options, the rank of the models is as follows: 1. BS with VBI, 2. BS with
GARCH, 3. BS with implied volatility, 4. BS with 360-day historical volatility, 5. BS with 10-day historical volatility, 6. NN1 with 252-day historical volatility, 7. BS with 21-day historical volatility, and 8. BS with
30-day historical volatility. That is, for OTM options, the best model is BS when GARCH volatility forecast is used in pricing the options, and it ranks second among other best models when different volatility
forecasts are used, which is represented by a superscript 2, while BS is the best model when the historical volatility forecast based on the past 360 days of data is used, and its rank is four represented by a superscript
4 among the other best models when other volatility forecasts are used.
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Fig. 6. Pricing errors of models according to moneyness for put options: Full sample.
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Fig. 7. Pricing errors of models according to moneyness for put options: Subsample.
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Fig. 8. Pricing errors of models according to time-to-maturity for put options: Full sample.
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Fig. 9. Pricing errors of models according to time-to-maturity for put options: Subsample.
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sample and subsample analysis, respectively. The BS model
tends toward underpricing for short-, medium-, and long-term
call options with all volatility forecasting approaches except
for implied volatility and historical volatility estimated by
data for the past ten days. However, the NN2 model consis-
tently overprices short-term call options with all volatility
approaches, and NN1 does not show any noticeable over-
pricing or underpricing tendency except with historical
volatility estimated with data for the past ten days. In Fig. 5,
showing the results of the subsample analysis, BS under-
pricing and NN1 and NN2 overpricing behavior also exist
during turbulent times both for short-term and medium-term
call options. Because the test sample only has one long-
term call option with a time to maturity of approximately
250 days, it is excluded from the graphs in order to provide
better representations of short- and medium-term call options.
3.2. Put options
Tables 3 and 4 present the out-of-sample RMSEs of the
models for put options for the moneyness and time-to-maturity
dimensions for the full-sample and subsample analyses,
respectively. The best model is BS with 360-day historical
volatility for all moneyness dimensions—that is, OTM, ATM,
and ITM put options. In terms of the time-to-maturity
dimension, the best model is again BS with historical vola-
tility estimated by the past 360 days of the data for all groups
in the time-to-maturity dimension, that is, short- and medium-
term put options. BS with VBI is the best model for long-term
put options, closely followed by the second-lowest RMSE
value in BS with historical volatility estimated by the past 360
days of data. For short-term put options, BS is the best model
with all volatility forecasting approaches. Overall, for put op-
tions in Turkish option market, the dominant model is BS with
historical volatility estimated by the past 360 days of data
regardless of the moneyness and time-to-maturity dimensions.
The models with the best pricing performance during turbulent
periods are BS with VBI, NN2 (or BS) with implied volatility,
and NN2 with historical volatility estimated by the past 360
days of data for OTM, ATM, and ITM options, respectively.
BS is the dominant model with all volatility forecasting ap-
proaches for OTM put options during both normal and tur-
bulent periods whereas NN is the dominant model with all
volatility forecasting approaches during turbulent periods for
ATM and ITM put options. In terms of the time-to-maturity
dimension, NN1 with implied volatility is the best model for
short-term options, and NN2 with GARCH volatility is the
best model for medium-term options. No results are reported
for long-term options during turbulent periods because of the
absence of put options, whose maturity is longer than 90 days
and the closing price in April 2018 is not zero.

The results and methodology provided here can be used by
practitioners as guidance for implementation of NN models
and choosing a pricing model without going through a detailed
and computationally burdensome and complex performance
evaluation process. However, as seen by the very small RMSE
values in the subsample analysis, in which one-month-ahead
16
forecasting is performed, compared to full-sample analysis,
in which eight-month-ahead forecasting is performed in order
to cover enough out-of-sample data to represent the groups in
the moneyness and time-to-maturity dimensions, the best
approach is to price options every day by expanding the
sample with the addition of the previous day.

Figs. 6 and 7 depict the pricing errors, p− p̂, in the
models according to the moneyness dimension for the full
sample and subsample analyses, respectively. According to
the full-sample analysis, the BS model tends to overprice put
options whereas NN models tend to underprice them, which
is the exact opposite of the findings for call options. The
same result is found in the subsample analysis. Specifically,
NN2 with all volatility forecasts tends to underprice only
OTM options, but NN1 underprices OTM, ATM, and ITM
option, except when implied volatility forecasts and histori-
cal volatility estimated with data for the past 360 days are
used.

Figs. 8 and 9 illustrate the pricing errors of the models
according to the time-to-maturity dimension for the full-
sample and subsample analyses. According to the full-
sample results, the BS model tends to overprice short-, me-
dium-, and long-term put options with almost all volatility
forecasting approaches whereas NN models tend to under-
price medium- and long-term put options. Specifically, NN2
with all volatility inputs overprices short-term options while
underpricing medium- and long-term options. According to
the subsample analysis, the BS model also overprices short-
and medium-term options. The NN1 model underprices short-
and medium-term put options in the full sample, however, the
NN2 model does not show any underpricing or overpricing
tendency except in the analyses using 360- and 30-day his-
torical volatility. In the overall evaluation of RMSEs of the
models in Table 3 and Figs. 6 and 8, the BS model with
historical volatility estimated by the past 360 days of data is
the most accurate, despite its consistent tendency toward
overpricing.

The full-sample analysis shows strong evidence of the
outperformance of the traditional BS option pricing model
compared to NN models for put options whereas the NN2
model outperforms BS and NN1 for call options. The results
for call options are consistent with the findings reported in the
literature analyzing the pricing of options with NNs in more
mature stock markets, such as S&P, FTSE, DAX, Nikkei, and
OMX. However, during turbulent periods, the NN models
perform better than the BS model for put options whereas the
BS model performs better than NNs for call options.

4. Summary and conclusion

The use and importance of financial derivatives has
increased, enabling economic actors to manage the risks of
more integrated and volatile financial markets. This has led to
rapid developments in option pricing literature, starting with
the seminal work of Black and Scholes (1972). Since then,
many versions of the BS model have been developed, as as-
sumptions of the model have been relaxed. However, in the
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past two decades, the performance of artificial NNs in pricing
options has been examined and analyzed by researchers,
especially for options on developed stock market indexes,
finding outperformance by NNs compared to the traditional BS
model. However, the absence of studies about options on
emerging stock market indexes makes it difficult to determine
whether the reported outperformance of NNs in pricing options
on developed stock market indexes holds there as well. This
study aims to fill this gap by comparing the pricing perfor-
mance of NNs with the BS model for BIST 30 call and put
index options during both tranquil and turbulent periods. The
study also examines whether different volatility forecasting
approaches, that is, GARCH, implied volatility, historical
volatility, and implied volatility index (VBI), affect and
improve model performance.

In general, in tranquil periods, the NN model is the best for
call options whereas the BS model is the best for put options;
however, in turbulent periods, the best model is BS for call
options and the NN model for put options at all moneyness and
time-to-maturity dimensions. The models have poor perfor-
mance in the pricing of ITM call options, with errors that are
four or five times larger than for other put and call options,
regardless of the model, in both tranquil and turbulent periods.
The Black-Scholes model is biased toward underpricing call
options and overpricing put options with almost all volatility
forecasting approaches in both tranquil and turbulent periods.
The results suggest that market participants treat call and put
options from precisely opposite perspectives, perhaps because
trading the “right to buy” is perceived as riskier than trading the
“right to sell” by market participants. One avenue for fruitful
future research is an investigation of the reasons for models’
relative underperformance for ITM call options and developing
a pricing approach for these options, as doing so could yield
valuable results for participants in Turkish option markets.
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