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A B S T R A C T

In the modern era, managing optimal real-time control of microgrids during the operation phase has been a 
significant challenge, requiring careful consideration of both technical and economic factors. This paper in-
troduces a framework for the real-time control of islanded microgrids using a preserving network. This structure 
incorporates various distributed generation sources, including rotating and non-rotating resources, along with 
energy storage systems. The optimization function within model predictive control (MPC) manages essential 
network parameters, such as frequency and voltage, while addressing real-time economic and technical objec-
tives. To enhance precision and account for uncertainties in generation and consumption parameters, the inte-
gration of continuous power flow and the preserving network model is employed. This approach aims to create a 
model that closely mirrors real-world conditions, ensuring a more accurate representation of microgrid dy-
namics. The proposed structure demonstrates significant improvements in both technical and economic per-
formance compared to Standard MPC and Adaptive MPC, highlighting its potential for more efficient islanded 
microgrid management. The proposed framework achieves notable reductions in total voltage deviation of 
85.87% and 87.62% compared to Standard MPC and Adaptive MPC, respectively. Additionally, it delivers 
impressive enhancements in frequency deviation of 99.46% and 96.62% compared to Standard MPC and 
Adaptive MPC, respectively. Economically, the proposed framework significantly outperforms both, reducing 
costs by 39.29% compared to Standard MPC and by 28.12% compared to Adaptive MPC.

1. Introduction

1.1. Importance and motivations

Microgrids, characterized by localized energy systems with distrib-
uted generation sources and controllable loads, have emerged as a 
crucial solution for enhancing grid resilience and advancing sustain-
ability [1,2]. As the demand for efficient and reliable energy solutions 
continues to rise, the optimization of microgrid control becomes 
imperative. Model predictive control (MPC) offers a promising frame-
work in this endeavor, providing a dynamic and forward-thinking 
approach [3,4]. However, the evolution to nonlinear model predictive 
control (NLMPC) presents an even more sophisticated means of micro-
grid control [5]. NLMPC not only enables anticipation and adaptation to 
future system behaviors but also effectively manages nonlinearities, 
constraints, and uncertainties inherent in microgrid operations [6,7]. 

The development of an effective NLMPC framework involves preserving 
network structure, addressing the complexities of linear and non-linear 
loads, and adeptly managing various resources, including energy storage 
devices. By seamlessly handling CPF and optimizing assets within the 
microgrid, NLMPC holds the potential to significantly enhance micro-
grid performance, promoting resilience, flexibility, and sustainability in 
power systems.

1.2. Literature review

The majority of distributed energy resources (DERs), which include 
distributed generators (DGs) and renewable energy sources (RES), are 
used in small electrical power grids known as microgrids (MGs). Func-
tionally, microgrids can be categorized as either grid-connected, islan-
ded, or in transition between these two states [2,8,9]. MPC has received 
significant attention in power systems engineering, particularly in MG 
energy management. Several factors contribute to this interest. Firstly, 
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MPC is well-suited for systems heavily reliant on demand and renewable 
energy generation forecasts, as it is based on predictions of future system 
behavior [10]. Secondly, the system becomes more resilient to uncer-
tainty, as MPC provides a feedback mechanism that allows for real-time 
adjustments to be made [11]. Lastly, MPC effectively manages power 
system constraints, including generator capacity and load balance, in the 
tertiary control layer [12].

Numerous studies have explored the use of Model Predictive Control 
(MPC) for effective power system management. The Economic Model 
Predictive Control (EMPC) approach has gained prominence as an 
effective solution for optimizing economic dispatch and integrating 
various energy storage systems [13,14]. However, reference [13] does 
not consider stochastic scenarios in handling wind power uncertainty 
and is oblivious to market dynamics and fluctuation in pricing. Simi-
larly, reference [14] does not deal with the issues of applying various 
models to predict load demand and renewable energy generation. Based 
on [15] the authors have suggested a real-time multi-objective load 
dispatch strategy for biomass heat and power cogeneration using model 
predictive control. While this paper gives a workable method to achieve 
real-time control, it overlooks operational reliability and transition 
times inherent in plants that convert biomass. The fact that the research 
does not consider independent variables that could have an impact on 
the performance of the proposed load dispatch control method, in view 
of external influences such as market dynamics or state policy changes, 
is overlooked. Furthermore, in reference [16], a distributed EMPC 
approach based on imprecise dual minimization is explored to tackle 
real-time economic dispatch problems. It is noteworthy, however, that 
the case study in this reference does not incorporate renewable gener-
ators and battery storage devices.

In this respect, the authors of reference [17] have proposed an 
optimization scheme for a hybrid model predictive control approach 
that incorporates weather prediction using the Weather Research and 
Forecasting (WRF) model. New rules in this setting have been intro-
duced to deal with special needs of connection and disconnection, like 
minimum connection times and maximum connection frequencies. 
While the proposed model has been validated through simulations using 
real weather data, it has not yet been applied to any real microgrid. 
Additionally, the computational costs for this framework are high, and 

no provisions have been made for future policy changes related to grid 
connection. In [18], an approach is presented for integrating wind 
power into system operation in real-time using an MPC scheme, which 
addresses uncertainty and optimizes economic dispatch. Although it 
manages uncertainties in wind power, it does not sufficiently account for 
additional uncertainties arising from demand response programs due to 
the unpredictable behavior of customers. Reference [19] proposes a 
two-layer hierarchical approach using MPC to gain better cost savings 
and energy efficiency for large commercial HVAC systems. The research 
emphasizes the challenges of real-time control for both cost and eco-
nomic dispatch problems. While this work introduces hierarchical 
decomposition for MPC, its evaluation is done mostly based on sample 
optimizations and simulation results and is lacking in terms of wide 
validation in the real world. As emphasized by [20], NLMPC emerges as 
a promising approach for real-time microgrid control, providing a 
specialized solution to navigate the intricate and dynamic characteris-
tics of DERs. While NLMPC can effectively address multiple control 
objectives, enhancing overall microgrid operation, it’s important to note 
that this research focuses explicitly on controlling individual microgrids 
rather than interconnected systems. Therefore, the NPM wasn’t 
considered in this study. Reference [21] introduces a data-driven 
NLMPC framework tailored for microgrid control. This framework 
adeptly captures the intricate and dynamic behavior of DERs through a 
data-driven approach leveraging Sparse Regression (SR). It’s worth 
noting that the accuracy of this data-driven model hinges on the quality 
and quantity of available data used to train the SR model. While the 
framework demonstrates robust performance under realistic load pat-
terns, underscoring its relevance for practical microgrid applications, 
it’s important to acknowledge that it does not incorporate the NPM. As 
noted in [22], NLMPC demonstrates its capability to efficiently manage 
optimal energy distribution within interconnected multi-node micro-
grids equipped with energy storage. By creating a virtual pool of 
distributed energy storage, NLMPC optimizes energy allocation and 
minimizes wear on storage devices. Additionally, the controller adeptly 
navigates diverse scenarios, including fluctuating weather conditions, 
varying load demands, and changing storage levels. However, it’s 
important to note that the NPM does not directly apply in this specific 
context.

In research on power systems and microgrids using MPC for man-
agement and control, significant gaps remain. Table 1 compares the 
proposed approach with state-of-the-art techniques, emphasizing its 
advantages in system complexity, stability, real-time performance, and 
system efficiency.

Current studies often overlook essential conditions and specific 
network details. Most of these studies don’t consider the real-life con-
ditions of the network; they tend to stick to theoretical scenarios, which 
don’t truly reflect the actual working conditions. Additionally, many of 
them prioritize cutting costs, emphasizing economic aspects, and 
ignoring the crucial technical and model preservation aspects of the 
system. This paper aims to bridge these gaps by introducing new and 
practical solutions to address the following shortcomings.

• Integration of a preserving network model for comprehensive system 
representation.

• Implementation of CPF considerations using NLMPC.
• Real-time and fast response mechanisms, improve the responsiveness 

of the optimal proposed NLMPC (PNLMPC) model.
• Simultaneous examination of both technical and economic aspects, 

ensuring a holistic understanding and optimization approach.
• The unpredictable behavior of wind speed and solar radiation is 

accurately modeled using the reduction technique based on Monte- 
Carlo Simulation.

These distinctive features underscore the novelty and superior ca-
pabilities of this research in advancing the state-of-the-art in power 
systems and microgrid studies.

Nomenclature

Abbreviations and nomenclature
PNLMPC Proposed Nonlinear Model Predictive Control
NLMPC Non-Linear Model Predictive Control
MIMO Multi-Input Multiple-Output
PDF Probability Distribution Function
MPC Model Predictive Control
CPF Continuous Power Flow
NPM Network Preserving Model
BESS Battery Energy Storage System
u(t) Input Vectors
y(t) Output Vectors
ŷ Normalized Function
f Equality Constraint
g Inequality Constraint
Yij Matrix of the Connectivity between Bus i and Bus j
θij Voltage Angle at Bus i, j
δi,δj Voltage Angle at Bus I and j
Vi,Vj Voltage in bus i and bus j
Id, Iq Inverter’s Output Current
νC

IN Cut-In Wind Speed
νC

OUT Cut-Out Wind Speed
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1.3. Contributions

This study introduces an innovative approach for microgrid opera-
tion, employing real-time optimal NLMPC that considers both technical 
and economic factors. The system’s efficiency is significantly improved 
by utilizing a sophisticated model with diverse components and a 
network control strategy incorporating CPF and model preservation. 
Here are the primary aspects and their unique contributions:

• The study incorporates PNLMPC, which optimizes the system in real 
time, considering both technical and economic factors within its 
objective functions. This approach allows for efficient system opti-
mization while ensuring cost-effectiveness.

• The paper employs a realistic network model that closely approxi-
mates reality, incorporating both rotating and non-rotating sources. 
This model accounts for uncertainties in the system and network 
dynamics, aiming to accurately represent the complexities of real- 
world systems.

• The microgrid under investigation consists of interconnected com-
ponents, including wind, photovoltaic (PV), battery, and diesel sys-
tems, all interconnected with the utility grid. This interconnected 
setup enables seamless operation and enhances overall system 
stability.

• The study highlights the crucial role of the diesel generator in sta-
bilizing power output fluctuations from primary energy generation 
units such as PV arrays and wind turbines. This contributes to a more 
stable energy supply within the microgrid.

• The mitigation of peak loads during island operations is achieved 
through the utilization of an Energy Storage System (ESS). This helps 
optimize energy usage and enhances the overall efficiency of the MG.

The approach involves utilizing CPF and applying a model preser-
vation strategy for network control. This strategy ensures efficient and 
stable operation of the microgrid while preserving the integrity of the 
network model.

1.4. Organization

The rest of this paper is organized as follows: Section 2 explores the 
conceptual model, providing a comprehensive overview. The mathe-
matical formulation of the proposed methodology is detailed in Section 
3. Section 4 describes the simulation and subsequent discussion of the 
results derived from the simulation. The conclusive insights of this 
article are encapsulated in Section 5, presenting the main findings and 
conclusion.

2. Conceptual model overview for network dynamics

MPC incorporates diverse techniques characterized by variations in 
model type, objective function, and solution approach [23,24]. Various 

MPC formulations can be employed for effective MG management [25]. 
In this study, NLMPC serves as a central controller, regulating each 
resource by adjusting the load under varying network conditions. This 
controller supervises technical aspects and optimizes critical parameters 
like frequency and voltage, as depicted in Fig. 1, while simultaneously 
minimizing costs.

Fig. 1 illustrates the NLMPC as the central controller in an islanded 
microgrid. The microgrid includes a mix of rotating and non-rotating 
resources, including photovoltaic panels, wind turbines, diesel genera-
tion, and battery storage. The NLMPC optimizes power flows and control 
setpoints among various DGs and loads. The configuration comprises 
three inverters dedicated to the photovoltaic system, wind turbines and 
battery storage, a diesel generator, and local loads. Moreover, the diesel 
generator is directly connected to the MG. In this setup, Inverter 1 
(associated with the photovoltaic system) acts as the PV bus, and 
Inverter 2 serves as the V/F bus, and Inverter 3 (associated with battery 
storage) functions as the PQ bus when in charging mode and as the PV 
bus when in discharging mode. The NLMPC manages the operation of 
the inverters and the diesel generator to ensure that power generation 
meets load demand while maintaining the required voltage and fre-
quency levels.

2.1. Optimal NLMPC control methodology

The NLMPC is a key component of the microgrid and is responsible 
for coordinating the operation of various DGs and loads to achieve 
optimal control. Using a nonlinear model-based approach, the NLMPC 
effectively anticipates and manages the dynamic behavior of microgrids. 
It optimizes power flow between DGs and loads, minimizing energy 
losses. Moreover, the NLMPC enhances adaptability by incorporating 
uncertainty models to forecast variable renewable energy sources and 
load fluctuations, thereby improving system resilience. This framework 
keeps on performing optimally with changes in DG addition or load 
variations. As a central control element, the NLMPC manages the 
operation of all microgrid components, maintaining voltage and fre-
quency stability, optimizing energy efficiency, and ensuring a reliable 
power supply to the loads. Given that energy storage is a pivotal 
component of MGs, their dynamic models are commonly expressed as 
state-space equations, with the state variable x(t) representing the 
charge level of the batteries. This implies that state-space models can 
effectively define the predictive control problem, rendering state-space 
MPC a promising choice for an islanded MG management. Moreover, 
this formulation is well-suited for handling multi-variable systems, a 
common scenario in an islanded MG. To model the behavior of a linear 
system, the following equations are employed: 
{

X(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) (1) 

MGs are often multi-input multiple-output (MIMO) systems. MIMO 
systems have m-dimensional input vectors u(t) and n-dimensional 

Table 1 
Comparison of Proposed Method and State-of-the-Art Techniques.

Aspect References This Paper
[15] [16] [18] [20] [21]

System 
Complexity

Moderate, lacks 
operational reliability 
considerations

High, but excludes 
renewable and storage

High, with significant 
computational costs

High, focused on 
individual 
microgrids

High, dependent on 
data quality

High, with detailed 
NLMPC framework

Stability Limited, overlooks 
operational reliability

Limited, excludes 
renewable generators

Moderate, high 
computational costs

Advanced, but 
focuses on single 
microgrids

Advanced, depends 
on data-driven 
accuracy

Improved through 
PNLMPC approach

Real-Time 
Performance

Good, but lacks policy 
change considerations

Good, but lacks 
renewable storage 
integration

Moderate, not feasible for 
real-time due to high costs

Excellent, focuses on 
microgrid control

Good, depends on 
model quality and 
data

Excellent, optimized 
for real-time control

System 
Efficiency

Moderate, does not 
consider all operational 
factors

Moderate, excludes 
critical components

Moderate, costly and 
untested in practice

High, but focuses on 
individual systems

High, limited by data- 
driven model quality

High, reduces cost 
by significant 
margins
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output vectors y(t). Matrix C equals identity because the output y(t) 
typically follows the state X(t) [26]. MPC computes a future control 
sequence over a finite horizon by utilizing the system’s current state, 
input, and output measurements, along with its model at each sampling 
instant. This control series meets constraints on the control action while 
optimizing a specified performance index. The control goal is to identify 
a series of control inputs across a specific prediction horizon, based on 
the current measurement, that satisfies a particular objective function 
and constraints. The control sequence described above will provide a 
predicted series of state vectors, which may be utilized to compute the 
expected sequence of system outputs. With the use of this knowledge, 
the system may be controlled, and the procedure is then repeated with 
the state measurement of the following time step acting as an initial 
condition to calculate the control input. Typically, the major objective is 
to penalize the control effort required to achieve the future output by 
tracking a certain reference signal along the prediction horizon. Hence, 
the following mathematical explanation of the MPC’s objective function 
and constraints are possible: 

minJ
(
Np
)
=
∑Np

j=1

[
‖ŷ(t + j|t) − r(t + j) ‖2

R + ‖Δu(t + j − 1) ‖2
Q

]
(2) 

s.t :

⎧
⎨

⎩

f
(
ŷj

t , x̂
j
t , û

j
t
)
= 0

g
(
ŷj

t , x̂
j
t , û

j
t

)
⩽0

(3) 

Where, the ŷ is a normalized function encompassing various objectives, 
including voltage optimization, frequency management, power losses 
reduction, and cost minimization for the network. R and Q are diagonal 
positive definite weighting matrices, and functions f and g indicates the 
equality and inequality constraints, respectively [27].

Hence, the objective function for the PNLMPC problem would be: 

minJ
(
Np
)
=
∑Np

j=1

[
‖ŷ(t + j|t) − r(t + j) ‖2

R + ‖Δu(t + j − 1) ‖2
Q

]
+ [cŷ(t

+ j|t) ] ]
(4) 

where c represents the contribution cost for the state variables [28], and 
the constraints would be the same as regular MPC. In fact, the objective 
function incorporates all technical and economic parameters and con-
ducts optimization accordingly. Additional details regarding these as-
pects will be presented in the subsequent sections.

3. Problem formulation

This section outlines the goals and limitations of the proposed al-
gorithm. The objective functions revolve around technical consider-
ations, including power loss, operating cost, frequency and voltage 
stability, voltage deviation, and the management of storage devices. 
Following this, the section delves into the mathematical formulations 
and constraints associated with modeling both rotating and non-rotating 
resources. In the context of real-time applications, a method’s efficacy is 
measured by its ability to promptly estimate stability margins without 
relying on post-fault information, coupled with a low computational 
cost. However, from a real-time perspective, recalculating the system’s 
operating point becomes challenging and time-consuming due to system 
topology changes resulting from disturbances. Network reduction 
models were prevalent in the initial stages of direct method develop-
ment. In the 1980s, the concept of NPMs emerged to overcome the 
drawbacks associated with network-reduction models [29]. By 
employing a NPM, the network structure is conserved, leading to the 
designation of the corresponding NLMPC function as a “structure-pre-
serving” energy function. In direct comparison with network-reduction 
models, Network-preserving models offer several advantages for direct 

Fig. 1. Conceptual model of network and islanded MG.
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stability analysis [30–32]:

In system modeling, it preserves the original network topology, 
allowing for a more realistic representation of power system com-
ponents, including dynamic load behavior (voltage and frequency 
variations) at load buses and detailed generator models.
In terms of the energy function, the transfer conductance of the 
preserving model significantly outperforms that of network- 
reduction models. This results in a numerical energy function that 
closely approximates the exact energy function.
From a computational standpoint, sparse matrix techniques can 
efficiently solve the nonlinear algebraic equations involved in the 
model.

In this study, the network-preserving model employs CPF, which is 
implemented through equations (5) and (6). 

Pi =
∑n

j=1
|Vi
⃦
⃦Vj
⃒
⃒
⃒
⃒Yij
⃒
⃒cos

(
θij − δi + δj

)
(5) 

Qi = −
∑n

j=1
|Vi
⃦
⃦Vj
⃒
⃒
⃒
⃒Yij
⃒
⃒sin

(
θij − δi + δj

)
(6) 

where, Yij is the matrix representing the connectivity between bus i and 
bus j.

The PNLMPC framework is specifically designed to address the 
inherent uncertainties in microgrid operation, including variations in 
renewable energy generation, unpredictable load changes, and potential 
equipment failures. As Fig. 2 depicts an inverter model with an LC filter, 
the PNLMPC employs a model-based predictive control strategy. This 
strategy relies on a nonlinear mathematical model of the islanded 
microgrid to forecast and optimize system behavior over a future time 
horizon. By incorporating the nonlinear dynamics of various compo-
nents—such as inverters, the diesel generator, and energy storage—the 
PNLMPC captures complex interactions more effectively and makes 
more informed control decisions. The optimization process accounts for 
factors like renewable energy availability, battery state-of-charge, load 
forecasts, and system constraints, aiming to achieve objectives such as 
cost minimization, emissions reduction, and enhanced reliability. This 
system operates under slower droop control, as shown in Fig. 3.

The effective terminal voltage and phase angle of the inverter, post- 
LC filter passage, are denoted as U∠φ in accordance with this model. By 
employing this representation, system dynamics can be accurately 
characterized using the inverter’s terminal states (angle, frequency, and 
voltage) and the line currents as dynamic variables without the necessity 
of considering the internal states of the inverter. This methodology is 
based on a 5th-order electromagnetic (EM) model, encompassing three 
inverter-related states (angle, frequency, and voltage) and two line- 
related states (the two components of the current phasor). The equa-
tions detailing this model in the dq reference frame are as follows: 

φ̇ = ϖ − ϖ0 (7) 

τϖ̇ = ϖset − ϖ −
Rpϖ0

ϛn
Pmeasurment (8) 

τU̇ = Uset − U −
Rq

ϛn
Qmeasurment (9) 

Lİd = Ucosθ − U0 − RId +ϖ0LId (10) 

Lİd = Usinθ − U0 − RId +ϖ0LId (11) 

In this context, the variables U and φ represent the effective terminal 
voltage and phase angle of the inverter, respectively, once they pass 
through the LC filters. The variable ϖ denotes the frequency of the 
inverter. Additionally, the variables Id and Iq represent the dq-frame 
components of the inverter’s output current. The equations (8) and (9)
describe the behavior of the terminal voltage and frequency, respec-
tively. These equations incorporate the influence of low-pass filters in 
the inverter power control system, which is characterized by the band-
width ϖc = τ − 1, and the values of Rp and Rq are the frequency and 
voltage droop gains, respectively.

Moreover, ϛn denotes the inverter rating, while ϖset and Uset are the 
set points of frequency and voltage controllers, respectively, and they 
are considered as inputs of the inverter. It is noteworthy that both ϖ and 
ϖ0 are considered to be measured in rad/s. The expressions for 
Pmearsurment and Qmearsurment are given by Pmearsurment =

3
2 UId and 

Qmearsurment = 3
2 UIq.

On the other hand, equations (10) and (11) capture the electro-
magnetic dynamics of the complex current I(t). The variables L = Lc +Ll 

Fig. 2. Illustration of the studies inverter model.
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and R = Rc +Rl represent the combined inductance and resistance of the 
connection, respectively, as observed at the inverter terminal.

3.1. Modeling of photovoltaic panels

Through the utilization of photovoltaic panels, the generation of 
power can be assessed utilizing the equation: 

Pt,S
PV
(
SRt,S) = NPV × FF × Vt,S × It,S

{
{∀t ∈ T
∀s ∈ S (12) 

The generation of electricity through photovoltaic panels Pt,S
PV relies on 

changes in solar radiation SRt,S, ambient temperature ATt ,time t based 
on hours, and particular scenario (s). A comprehensive examination of 
these factors, along with other pertinent attributes, is thoroughly dis-
cussed in the reference [33]. 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

FF =
VMPP × IMPP

VOC × ISC

Vt,S = VOC − Kν
(

ATt + SRt,S
(

NOT − 20
0.8

))

It,S = SRt,S[ISC + Kν
(
Tt,S − 25

) ]

(13) 

3.2. Modeling of wind turbine

The power produced by a wind turbine depends on both the wind 
speed and the specific type of wind turbine, as described by the 
following equation [34]. 

P T,S

Wind turbine(ν T,S ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0→if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν T,S ⩽νC
IN

or
ν T,S ⩾νC

OUT

α + β × ν T,S + γ × (ν T,S )
2→if

⎧
⎨

⎩

νC
IN⩽ν T,S < νR

νR⩽ν T,S < νC
OUT

(14) 

where P T,S

Wind turbine represents the generated power, and νC
IN denotes 

the cut-in wind speed, indicating the lower threshold at which the wind 
turbine can generate power. Conversely, νC

OUT represents the cut-out 
wind speed, signifying the upper limit beyond which the wind turbine 
stops generating power to prevent potential damage. Moreover, α, β, and 
γ collectively represent the coefficients of the wind turbine. Various 
wind turbine models may employ distinct mathematical expressions 
derived from empirical data and theoretical considerations.

3.3. Modeling of BESS

The comprehensive modeling approach for the ESS addresses con-
siderations for its integration and performance within the MG. This in-
volves utilizing a set of specified equations, including equations (7) to 
(11), along with equations (15) and (16). 

PCh,PDis = ±

(
3
2
UdId

)

(15) 

E
•

= η.PCh (16) 

Where E
•

represents rate of change of battery energy and η shows the 
coulombic efficiency. The energy stored in the battery can be calculated 
using the following expression: 

EB(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

EB(t − 1) +

(
E
•

ΔT

)

−

(PDis
B(t)

ΔT

)

.

(
1

ηDis
B

)

t > 1

EB(0) +

(
E
•

ΔT

)

−

(PDis
B(t)

ΔT

)

.

(
1

ηDis
B

)

t = 1

(17) 

Where EB(t) (kWh) represents the battery’s energy level at time t, and 
EB(0) denotes the initial energy level of the battery. Notably, the 
charging and discharging operations of the battery energy storage sys-
tem (BESS) do not occur simultaneously, so binary variables ICh

B and IDis
B 

are employed for operational decision-making. Additionally, the binary 
variables constrain the BESS charging/discharging capacity. Consid-
ering the constraints posed by degradation, equation (21) sets limits on 
the BESS’s lower and upper energy levels. 

0⩽PCh
B(t)⩽PCh

B,max.I
Ch
B (18) 

0⩽PDis
B(t)⩽PDis

B,max.I
Dis
B (19) 

I
Ch
B +I

Dis
B ⩽1 (20) 

EB,min⩽EB(t)⩽EB,max (21) 

SoC
•

=
E
•

E
(22) 

SoC
•

relates the rate of change of state of charge and the total battery 
energy is described by E.

3.4. Modeling of diesel generator

Alterations in active power have a substantial impact on the overall 

Fig. 3. The inverter droop controller.
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system frequency, with reactive power displaying a comparatively lower 
sensitivity to frequency variations, predominantly depending on 
changes in voltage magnitude. As a result, active and reactive power are 
managed by distinct control mechanisms. The load frequency control 
(LFC) loop oversees active power and frequency, while the automatic 
voltage regulator (AVR) loop maintains control over reactive power and 
voltage magnitude. The importance of LFC has grown with the expan-
sion of interconnected systems, facilitating their efficient operation. In 
this study, our focus is exclusively on the LFC loop for generators, while 
the AVR loop is disregarded. Consequently, it is assumed that the diesel 
generator solely contributes to the distribution of active power. LFC is 
implemented for every generator in a connected power system. Fig. 4
illustrates the diagram depicting the LFC loop. The controllers are 
configured based on a specific operational state and are responsible for 
managing slight changes in load requirements to ensure that the fre-
quency remains within predefined boundaries. Minor changes in active 
power are predominantly influenced by alterations in the rotor angle, 
subsequently impacting the frequency.

The explanation of the primary components of LFC, including the 
Governor, prime mover load, and rotating mass model, is provided as 
follows:

1) The Governor model: the input command ΔPG is converted via a 
hydraulic amplifier into the steam valve position ΔPV. The governor 
time constant TG characterizes the response time of the governor, 
and its transfer function is given by:

ΔPV(s)
ΔPG(s)

=
1

1 + TGs
(23) 

2) Prime mover model: the prime mover model serves the purpose of 
generating mechanical power, which can be accomplished through 
the utilization of various energy sources such as steam for steam 
turbines or water for hydraulic turbines. The prime mover model, 
denoted as ΔPmechanical, establishes a relationship between the me-
chanical power output and variations in the steam valve position 
ΔPV . The transfer function for this model is expressed as:

ΔPV(s)
ΔPG(s)

=
1

1 + TTurbins
(24) 

3) Rotating mass and load model: the response of the motor load to 
changes in frequency can be assessed through the examination of its 
speed-load characteristic.

Δϖ(s)
ΔPmechanical(s) − ΔPLoad(s)

=
1

2Hs + D
(25) 

Utilizing equations (23), (24), and (25), the LFC loop for the diesel 

generator can be constructed, as depicted in Fig. 5.
The s-domain equations describing the block diagram can be 

expressed as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + TTurbins)ΔPV(s) = ΔPreference −
1
R

Δϖ(s)

(1 + TTurbins)ΔPmechanical(s) = ΔPV

(2Hs + D)Δϖ(s) = ΔPmechanical − ΔPLoad

(26) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sΔPV(s) = −
1
TG

ΔPV(s) −
1

RTG
Δϖ(s) +

1
TG

ΔPreference(s)

sΔPmechanical(s) =
1

TTurbin
ΔPV(s) −

1
TT

ΔPmechanical(s)

sΔϖ(s) =
1

2H
ΔPmechanical(s) −

D
2H

Δϖ(s) −
1

2H
ΔPLoad(s)

(27) 

Transforming into time-domine, it is observed that: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δ̇PV(s) = −
1
TG

ΔPV −
1

RTG
Δϖ +

1
TG

ΔPreference

Δ̇Pmechanical(s) =
1

TTurbin
ΔPV −

1
TTurbin

ΔPmechanical

Δ̇ϖ =
1

2H
ΔPmechanical −

D
2H

Δϖ −
1

2H
ΔPLoad

(28) 

where in our study, [ΔPV ,ΔPmechanical,Δϖ]
T are states of the diesel 

generator and ΔPLoad is the input of the system. Expressing in matrix 
form, with ΔPreference = 0, the state equation becomes: 

⎡

⎣
Δ̇PV

Δ̇Pmechanical
Δ̇ϖ

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
TG

0
1

RTG

1
TTurbine

− 1
TTurbine

0

0
1

2H
− D
2H

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
ΔPV

ΔPmechanical
Δϖ

⎤

⎦+

⎡

⎢
⎢
⎢
⎣

0

0
− 1
2H

⎤

⎥
⎥
⎥
⎦
[ΔPLoad]

(29) 

Fig. 4. Block diagram of automatic LFC.

Fig. 5. Load frequency control of diesel generator.
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3.5. Control oriented model

Fig. 6 depicts the microgrid configuration under investigation, 
comprising three inverter-based DERs and a diesel generator, forming an 
island microgrid. It is crucial to highlight that the system comprises a 
total of 20 dynamical equations, with 7 inputs and 7 outputs. Therefore, 
the entire system can be formulated as follows:

elements [ωset2, uset2]
T, administering control signals for its operation. 

Moreover, the vector [u5(κ), u6(κ) ]T is specific to inverter 2 with ele-
ments [ωset3, uset3]

T, providing control signals for its operation. The input 
uT

7(κ) is responsible for controlling the diesel generator, which is equal to 
PL. 

Inverter1 :

χ1(κ + 1) = f1(χ(κ) )
χ2(κ + 1) = f2(χ(κ), u(κ) )
χ3(κ + 1) = f3(χ(κ), u(κ) )

χ4(κ + 1) = f4(χ(κ) )
χ5(κ + 1) = f5(χ(κ) )

Inverter2 :

χ6(κ + 1) = f6(χ(κ) )
χ7(κ + 1) = f7(χ(κ), u(κ) )
χ8(κ + 1) = f8(χ(κ), u(κ) )

χ9(κ + 1) = f9(χ(κ) )
χ10(κ + 1) = f10(χ(κ) )

Inverter3 :

χ11(κ + 1) = f11(χ(κ) )
χ12(κ + 1) = f12(χ(κ) )

χ13(κ + 1) = f13(χ(κ), u(κ) )
χ14(κ + 1) = f14(χ(κ) )

χ15(κ + 1) = f15(χ(κ), u(κ) )
χ16(κ + 1) = f16(χ(κ), u(κ) )

χ17(κ + 1) = f17(χ(κ) )

DieselGenerator :
χ18(κ + 1) = f18(χ(κ) )
χ19(κ + 1) = f19(χ(κ) )
χ20(κ + 1) = f20(χ(κ) )

(30) 

where, 
⎧
⎨

⎩

χ(κ) =
[
χT

1(κ), χT
2(κ), χT

3(κ),…, χT
20(κ)

]T

u(κ) =
[
uT

1(κ), u
T
2(κ), u

T
3(κ), ..., u

T
7(κ)

]T (31) 

In the considered context, the state vector [χ1(κ),…, χ5(κ) ]
T with ele-

ments 
[
θ1(κ),ω1(κ), u1(κ), Id1(κ), Iq1(κ)

]T represents the dynamic vari-
ables of inverter number one. Similarly, the state vector 
[χ6(κ),…, χ10(κ) ]

T with elements 
[
θ2(κ),ω2(κ), u2(κ), Id2(κ), Iq2(κ)

]T cor-
responds to inverter number two. The state vector [χ11(κ),…, χ15(κ) ]

T 

with elements 
[
θ3(κ),ω3(κ), u3(κ), Id3(κ), Iq3(κ)

]T corresponds to inverter 
number three. Furthermore, the state vector [χ16(κ),…, χ20(κ) ]

T repre-
sents the state variables [Pv,Pm,ωd]

T of the diesel generator.
Regarding control inputs, the vector [u1(κ), u2(κ) ]T is linked to 

inverter 1, controlling its operation with elements [ωset1, uset1]
T. The 

vector [u3(κ), u4(κ) ]T is designated for inverter 2 featuring elements 
[ωset2, uset2]

T, administering control signals for its operation. Moreover, 
the vector [u5(κ), u6(κ) ]T is specific to inverter 2 with elements 
[ωset3, uset3]

T, providing control signals for its operation. The input uT
7(κ)

is responsible for controlling the diesel generator, which is equal to PL.

3.6. Cost modeling

The formulations of cost models for photovoltaic panels (PV), wind 
turbines, battery energy storage system (BESS), diesel generators, and 
the grid are expressed in equations (32) to (37). For comprehensive 
explanations of the symbols and variables used in these equations, 
please refer to references [35–37]. 

COSTϛ(t) = Aϛ +Bϛ × PP(t)
{

∀t ∈
∀ϛ ∈ [PV,Wind turbine] (32) 

Aϛ =
COSTϛ

capital × Pϛ
capital × AIR

Tlife × 365 × 24 × CFϛ
;Bϛ = COSTO&M

ϛ →∀ϛ ∈ [PV,Wind turbine]

(33) 

COSTBESS(t) = ABESS +BBESS ×
⃒
⃒PBESS(t)

⃒
⃒± βTOU(t) × PBESS(t)→∀t ∈ T

(34) 

ABESS =
COSTBESS

capital × PBESS
capital × AIR

Tlife × 365 × 24 × CFBESS
;→BBESS = COSTO&M

BESS (35) 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

COSTϛ = COSTϛ
O&M(t) + Hϛ × COSTϛ

EMI(t)
COSTϛ

O&M(t) = c + b × Pϛ(t) + a × P2
ϛ (t)

COSTϛ
EMI(t) =

(
Cϛ

CO2
+ Cϛ

SO2
+ Cϛ

NO2

)
× Pϛ(t)

→∀ϛ

∈ {DiselGenerator,Grid},∀t ∈ T (36) 

Fig. 6. Illustration of the schematic of microgrid under investigation.
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Hϛ =
COSTϛ

O&M(t)
COSTϛ

EMI(t)

⃒
⃒
⃒
⃒
PMAX

ϛ

→∀ϛ ∈ {DiselGenerator,Grid},∀t ∈ T (37) 

Where,Aϛ is Capital cost component. The COSTϛ
capital is the initial in-

vestment in the system. Bϛ is operational and Maintenance (O&M) cost 
component. COSTO&M

ϛ are ongoing costs for running and maintaining the 
system. COSTϛ

EMI is Emission cost. Hϛ is emission factor.

3.7. Modeling uncertainty

The unpredictable characteristics of wind power generation and 
photovoltaic systems present a challenge in microgrid operation. 
Neglecting uncertainty issues leads to unrealistic and inaccurate model 
results. To address this, a stochastic model based on scenario generation 
and reduction has been employed to improve the module’s reliability 
and mitigate uncertainties associated with PV and WT. The uncertainty 
associated with solar radiation is typically addressed by fitting its 
probability distribution using the beta Probability Distribution Function 
(PDF): 

PDF(x) =
℘(α + β)

℘(α) + ℘(β)
× xα− 1 × (1 − x)β− 1 (38) 

where, α and β are determined from the mean value ϑ, and the standard 
deviation using equation (39). 

β = (1 − ϑ) ×
(

ϑ(1 − ϑ)
δ2 − 1

)

, α =
ϑ × β
1 − ϑ

(39) 

Additionally, the uncertain behavior of wind is commonly described 
using the Weibull distribution function. Further details regarding 
modeling and parameter selection are available in [33]. 

PDF(υ) = k
c

(υ
c

)β− 1
exp
(

−
(υ

c

)k
)

⇒k =
(δ

c

)k
; c =

ϑ

℘
(

1 + 1
k

) (40) 

where, k and c represent the shape and scale parameters for the Weibull 
function, respectively.

After generating scenarios, a backward scenario reduction technique 
is applied [33]. Initially, the interval for each pair of scenarios is 
calculated. Subsequently, for each scenario, the one with the shortest 
distance is determined. The closest match for each scenario is identified 
by multiplying the probability of scenarios occurring at the distance of 

the scenario’s closest match. The scenario with the least impact is 
identified and eliminated.

4. Simulation results

In this section, the PNLMPC is simulated by MATLAB 2023a. The 
simulation employs the NLMPC toolbox provided by MATLAB Simulink 
on a PC running Windows 10 Pro, equipped with an Intel Corei7-6500U 
processor clocked at 2.50 GHz and 12.0 GB of RAM.

4.1. Input parameters of the system

Fig. 6 presents a schematic diagram of the microgrid under study, 
highlighting its interconnected DGs. Figs. 7, 8, and 9 illustrate the un-
certainties associated with wind speed, solar radiation, and ambient 
temperature, respectively. These uncertainties are modeled using PDF to 
accurately capture the variability in these parameters.

In an islanded microgrid, which operates independently from the 
main grid, fluctuations in wind and solar power due to weather un-
certainties can significantly impact system stability and reliability. 
These variations in power generation may lead to voltage and frequency 
instability, complicating load management. Additionally, uncertainties 
in ambient temperature can influence the efficiency and output of 
generating units. To address these challenges, the microgrid design 
should integrate energy storage solutions, such as batteries, to mitigate 
the variability in renewable power generation. Furthermore, the control 
and energy management system must be designed to accommodate the 
dynamic nature of renewable energy production and ensure stable 
operation of the microgrid.

Moreover, loads within a microgrid exhibit variability and un-
certainties due to factors such as changes in consumer behavior, weather 
conditions, and fluctuations in load demand. Figs. 10 and 11 illustrate 
these uncertainties in both active and reactive loads, simulated using 
probability density functions (PDF). The peaks of the PDF curves 
represent the load magnitudes with the highest probability of occur-
rence during microgrid operation. This information is crucial for un-
derstanding the dynamic behavior of the microgrid and its response to 
load changes. Insights from Figs. 10 and 11 can inform the design and 
operation of the microgrid, including energy storage system sizing, 
optimization of control strategies, and evaluation of system stability and 
resilience.

Fig. 7. The PDF of nominal wind speed variations during operation of MG.
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Fig. 8. The PDF of nominal Irradiance variations during operation of MG.

Fig. 9. The PDF of nominal temperature variations during operation of MG.
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4.2. Results and analysis

Figs. 12 and 13 depict a continuous-time representation of active and 
reactive power. In Fig. 12, the green line represents the active power 
reference, while the purple line illustrates the combined active power 
generated from all microgrid DGs. Notably, at the 15th second, the 
active power dynamically transitions from 40 kW to 130 kW. The 
PNLMPC adjusts the DGs to ensure that the summation of generated 
active powers closely follows the active power reference with high ac-
curacy and speed. This results in a balanced relationship, where the sum 
of generated active power corresponds to the sum of active power 
consumption.

Furthermore, in Fig. 13, the reactive power reference is denoted by 
the pink line, and the blue line represents the summation of generated 
reactive power from all DGs in the microgrid. Significantly, at the 22nd 
second, the reactive power dynamically shifts from 30 kVAR to 40 

kVAR. The NLMPC regulates the DGs to guarantee that the total 
generated reactive power closely tracks the reactive power reference 
with precision and speed. This leads to an equilibrium where the total 
amount of generated reactive power corresponds with the total amount 
of reactive power consumption. Figs. 14-17 provide a detailed insight 
into the optimal output of active power from individual DGs within the 
microgrid. The PV panel and wind turbine showcase their optimal 
generation in green and purple, respectively, while the diesel generator 
and battery storage indicate their optimal active power generating rates 
in grey (Fig. 16) and red (Fig. 17).

Fig. 17 specifically highlights the active power generated by the 
battery storage system. Initially, negative active power during the first 
10 s signifies the battery being in a charging state. Once reaching full 
charge, the battery ceased to receive power input from the 10th to the 
15th second. However, a substantial surge in active power consumption, 
from 40 kW to 130 kW at the 15th second, triggered the battery to 

Fig. 10. The PDF of nominal active load variations during operation of MG.

Fig. 11. The PDF of nominal reactive load variations during operation of MG.
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Fig. 12. Active power dynamics in the microgrid, regulated for balance by MPC.

Fig. 13. Reactive power dynamics in the microgrid, regulated for balance by MPC.

Fig. 14. Peak of active power generation from PV panels. Fig. 15. Peak of active power generation from wind turbine.
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commence discharging, exhausting its stored energy by the 20th second. 
Consequently, by the 25th second, the battery ceased supplying any 
additional active power to the microgrid. In the event of the battery 
being unable to provide active power to the microgrid, inverters 1 and 2 
sequentially intervene to compensate, as depicted in Figs. 14 and 15. 
Particularly noteworthy is, initiating an escalation in active power 
production to regulate voltage and frequency. This compensation 
mechanism ensures a delicate balance between total active power con-
sumption and generation, as demonstrated in Fig. 15. Commencing from 
the 20th second onwards, there’s a concerted effort towards both 
voltage and frequency control, coupled with optimizing the economic 
efficiency of the microgrid to maintain network stability.

Fig. 18 provides an overview of the battery storage status managed 
by PNLMPC, initially charged to 20 Wh (equivalent to 25% State of 
Charge). The battery’s protective range is set between 100% and 25%. 
As shown in Fig. 15, during the initial 15 s, with low active power, the 
battery underwent a steady charging process, reaching full capacity at 
100% or 80 Wh. However, at the 15th second, with a sharp increase in 
active power from 40 kW to 130 kW, the battery discharged to support 
the microgrid, reaching a discharge level of 25%. This discharge strategy 
ensures the protection of the storage device, preventing deep discharge 
as per the limitations of the protection system.

Frequency characteristics (in rad/sec) of inverters 1, 2, and the BESS 
are displayed in Fig. 19. These results unequivocally showcase the ef-
ficacy of our proposed method in consistently upholding stable fre-
quency levels, even amidst fluctuations in both active and reactive 
power.

Fig. 20 presents a comparative analysis examining voltage 

performance across different control methods. Specifically, three 
distinct controllers are evaluated for voltage stability: the PNLMPC, 
depicted by a black line; a standard MPC, represented by a blue line; and 
an adaptive MPC, illustrated with a red line. The voltage level is stan-
dardized at 380 V in this experimental setup. It’s evident that the 
PNLMPC exhibits superior control before any significant changes. 
Moreover, at the 15th (sec) time interval, amidst an escalation in active 
power demand, the PNLMPC, indicated by the black line, demonstrates 
the most effective voltage regulation during this period. Furthermore, it 
swiftly converges to the reference value after that, while the remaining 
controllers fail to track the reference closely. Notably, the voltage fluc-
tuates between 381.6 V and 382.2 V before and after the fluctuation in 
the PNLMPC. At the same time, the range for the adaptive MPC spans 
from 383.5 V to 387.7 V, and the reference targets cannot be met. 
Similarly, the standard MPC struggles to adhere to the references, 
registering 385.5 V before the fluctuation and reaching 396.6 V post- 
fluctuation.

Moreover, optimization extends beyond technical parameters to 
encompass economic considerations for validation during the opera-
tional phase. Hence, the PNLMPC controller is tasked with adjusting 
generation to minimize all operational costs arising from sudden 
changes. In Fig. 21, three different controllers are analyzed: the PNLMPC 
(depicted by the black line), the standard MPC (shown in red), and the 
adaptive MPC (represented by the blue line). Before any shifts in active 
power, costs are uniform across all controllers. However, at the 15th 
moment, when a sudden load increase occurs, the PNLMPC swiftly 
adapts generation to minimize operational costs, displaying superior 
speed and accuracy compared to its counterparts. Additionally, as 

Fig. 16. Peak active power generation from diesel generator.

Fig. 17. Peak active power generation from battery storage.

Fig. 18. PNLMPC − managed battery storage dynamics.
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evident from the magnified section of Fig. 21, the PNLMPC consistently 
causes lower costs throughout the system’s startup phase than alterna-
tive controllers. Following load increases and stabilization of inverters, 
the PNLMPC system continually adjusts distributed generation capacity 
to minimize operational expenses. Given the significant load increase at 
the 15th moment, the discrepancy in operational costs becomes more 

pronounced.
Table 2 has been compiled for a comparative analysis between 

PNLMPC and alternative methodologies as part of our validation efforts. 
The results of optimizing the objective function using PNLMPC and 
other methods are presented. The proposed optimization algorithm 
consistently outperforms its counterparts across all metrics, 

Fig. 19. Stable frequency control amidst Power Fluctuations with PNLMPC. a) controlling the frequency of photovoltaic systems (inverter 1). b) controlling the 
frequency of wind turbine (inverter 2). c) controlling the frequency of BESS (inverter 3).
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demonstrating superior performance. To ensure fairness, the results 
from other methodologies were implemented by us, using the same 
objective function and parameters as in the original papers. A fixed 
number of problem evaluations were allocated to all methods to ensure a 
meaningful comparison and control for computational cost differences. 
All methodologies addressed the same optimization problem, enabling a 
direct assessment of PNLMPC’s performance. This systematic evaluation 
aimed to discern each method’s relative strengths and weaknesses, 
providing valuable insights into their practical applicability for the same 
task.

Table 2 clearly illustrates that the difference in cost savings between 

the Standard MPC and Adaptive MPC is around 15.54%. Additionally, 
the PNLMPC reduced costs by 39.29% compared to the Standard MPC 
and by 28.12% compared to the Adaptive MPC. Furthermore, PNLMPC 
shows significantly lower total voltage deviation and frequency devia-
tion compared to both Standard MPC and Adaptive MPC, with values of 
0.26% and 0.00045%, respectively. In terms of total voltage deviation, 
PNLMPC achieves an outstanding reduction of 85.87% and 87.62% 
compared to Standard MPC and Adaptive MPC, respectively. Similarly, 
PNLMPC demonstrates remarkable improvements of 99.46% and 
96.62% in frequency deviation compared to Standard MPC and Adaptive 
MPC, respectively. Additionally, PNLMPC demonstrates the shortest 

Fig. 20. Comparative analysis of voltage stability across PNLMPC, Standard MPC, and Adaptive MPC.

Fig. 21. Comparative analysis of economic parameter optimization for PNLMPC, Standard MPC, and Adaptive MPC.

Table 2 
Comparative analysis between PNLMPC and alternative methodologies for validation.

Consideration Statues Operating Cost ($) Total Voltage Deviation (%) Frequency Deviation (%) CPU-Time for 40(sec) Simulation

PNLMPC 94,767,200 0.26 0.00045 39.4
Standard MPC [38,39] 156,110,000 1.84 0.0832 600
Adaptive MPC [40,41] 131,843,000 4.2 0.0173 1125
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CPU-Time for 40 s of simulation, showcasing its efficiency in conver-
gence and calculation, thus highlighting the effectiveness of the pro-
posed framework in real-time applications.

5. Conclusions

Managing real-time control in islanded microgrids, considering the 
system’s dynamics and components alongside the NPM is a multifaceted 
endeavor requiring a nuanced blend of technical acumen and economic 
prudence. This paper introduces a novel framework aimed at addressing 
these challenges, offering solutions to optimize system performance 
within technical and economic constraints. By integrating NPM and CPF 
within a platform based on NLMPC, the proposed framework presented 
a comprehensive strategy for efficiently managing network parameters 
while meeting real-time objectives. The study underscores the impor-
tance of grappling with uncertainties inherent in generation and con-
sumption resources, advocating for a realistic portrayal of microgrid 
dynamics. Simulation results, closely resembling real-world scenarios, 
affirm the efficacy and versatility of the proposed framework in opti-
mizing the output generation of various resources, thereby enhancing 
both the technical and economic aspects of the system. Notably, the 
proposed framework meticulously considers the dynamics of the 
network and its components, along with their associated uncertainties. 
Through the optimization function embedded within the PNLMPC 
framework, crucial network parameters such as frequency and voltage 
are effectively managed, addressing real-time economic and technical 
objectives simultaneously. When compared to Standard MPC and 
Adaptive MPC, the proposed PNLMPC approach demonstrates superior 
performance in both technical and economic aspects. Although Adaptive 
MPC performs better than Standard MPC technically, the analysis re-
veals that PNLMPC excels in both voltage and frequency regulation, 
maintaining minimal deviations before and after fluctuations. Regarding 
total voltage deviation, PNLMPC achieves a remarkable decrease of 
85.87% and 87.62% in comparison to Standard MPC and Adaptive MPC, 
respectively. Likewise, PNLMPC exhibits impressive enhancements of 
99.46% and 96.62% in frequency deviation compared to Standard MPC 
and Adaptive MPC, respectively. Economically, while Standard MPC can 
reduce costs by up to 15.54% compared to Adaptive MPC, PNLMPC 
significantly outperforms both, reducing costs by 39.29% compared to 
Standard MPC and by 28.12% compared to Adaptive MPC. Furthermore, 
the integration of CPF and the NPM yields a model that faithfully mirrors 
real-world conditions, providing an accurate representation of island 
microgrid dynamics. The experimental results indicate that PNLMPC 
exhibits the shortest CPU-Time for simulation compared to both Stan-
dard MPC and Adaptive MPC. This emphasizes the effectiveness of the 
proposed framework for real-time applications. Thus, by employing this 
holistic methodology, the proposed approach significantly contributes 
to the advancement of more effective management strategies for prac-
tical microgrid applications. Looking ahead, further research and 
implementation of our framework hold promise for bolstering the 
resilience and efficiency of microgrid systems in response to evolving 
energy challenges.

6. Future direction

Future research will concentrate on advancing the scalability and 
computational efficiency of the PNLMPC framework to ensure its 
applicability to larger and more complex microgrid systems. While this 
study has primarily focused on islanded mode operations, subsequent 
investigations will expand the framework’s applicability to grid- 
connected microgrids. Additionally, future work will assess the impact 
of economic factors and policy changes on the PNLMPC framework’s 
performance. This will involve simulating various market conditions 
and regulatory scenarios to determine their effects on the framework’s 
efficiency and cost-effectiveness.
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