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Te stochastic skiving stock problem (SSP), a relatively new combinatorial optimization problem, is considered in this paper. Te
conventional SSP seeks to determine the optimum structure that skives small pieces of diferent sizes side by side to form as many
large items (products) as possible that meet a desired width. Tis study studies a multiproduct case for the SSP under uncertain
demand and waste rate, including products of diferent widths. Tis stochastic version of the SSP considers a random demand for
each product and a randomwaste rate during production. A two-stage stochastic programming approach with a recourse action is
implemented to study this stochasticNP-hard problem on a large scale. Furthermore, the problem is solved in two phases. In the
frst phase, the dragonfy algorithm constructs minimal patterns that serve as an input for the next phase. Te second phase
performs sample-average approximation, solving the stochastic production problem. Results indicate that the two-phase heuristic
approach is highly efcient regarding computational run time and provides robust solutions with an optimality gap of 0.3% for the
worst-case scenario. In addition, we also compare the performance of the dragonfy algorithm (DA) to the particle swarm
optimization (PSO) for pattern generation. Benchmarks indicate that the DA produces more robust minimal pattern sets as the
tightness of the problem increases.

1. Introduction

Te skiving stock problem (SSP) has been described by Zak
[1] as the companion piece to the cutting stock problem
(CSP) since they have similar inputs and solution ap-
proaches. Skiving is a relatively new technology. It involves
joining, binding, stitching, or sealing together small pieces
(auxiliary rolls) to form large items (products) that meet
a minimum specifed width. It aims, on the whole, to obtain
the maximum number of large items as possible [1]. Several
narrow rolls are joined in the paper industry to construct
wider rolls [1]. In manufacturing toothed belts, the small
rectangular pieces remaining after cutting are stitched to-
gether to form large rectangles [2]. Other skiving applica-
tions include pipe manufacturing, frefghting system design
[3], and cognitive radio network spectrum aggregation [4].

In particular, in industries with high raw material residues,
the skiving process is widely applicable [2]. In this case, a set
of optimal pattern combinations is generated, maximizing
production with limited availability of smaller items. Te
skiving process is an inherently waste-minimization pro-
cedure, mainly modeled as a mixed-integer problem (MIP).
Because of theNP-hard structure of the MIP, enumerating
all feasible patterns is difcult, specifcally for large-scale
problems. Pattern-based models [1], arc fow models [5], or
assignment models [4] are some of the solution approaches
presented in the relevant literature. Methodologically, for
the MIP structure of its mathematical formulation [1], the
synthesis of column generation (CG) and branch and bound
(BB) is fundamental. Due to the arduous nature of obtaining
an optimal solution for large problems and dimensional
complexities, most of the proposed methodologies for the
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SSP employ heuristics [6]. Tese heuristics can essentially
aid in ensuring integer solutions after solving the linear
relaxation [6], and the construction of the minimal pattern
sets provides input to the mathematical model [7]. Te
performance of metaheuristic optimization methods on the
SSP compared to the CSP remains under-researched in the
literature, despite the fact that metaheuristic methods have
been very promising on many similar problems, such as
the CSP.

Te vast majority of the SSP literature considers
solving the deterministic SSP. Tese approaches stem
from the assumption that the decision-maker has the
perfect information regarding all parameters, which leads
to unrealistic results. Real-world problems involve large
uncertainties in various parameters such as product
demand, resource availability, yields, set-up and pro-
cessing times, and costs. In deterministic planning, where
only expected values are considered, it is not possible to
make an appropriate adaptive decision to minimize the
risk caused by the variability of these factors. Many re-
searchers have investigated the various structures for the
stochastic CSP, where the demand [8, 9] or the yield [10]
is a random variable. However, there is a noticeable lack
of stochastic solution strategies for the SSP in the
literature.

In this study, we expand upon the pure SSP in several
dimensions by including (i) the set-up costs for each pattern
change, (ii) the raw materials costs of the requisite small
items, and (iii) the required quantities of small items to be
used. Furthermore, a heuristic method for solving the
multiproduct SSP in a given stochastic setting is imple-
mented. For this stochastic version of the SSP problem, two-
stage stochastic programming (SP) with recourse is
employed [11–13] and a mathematical model for weakly
inhomogeneous items under both stochastic demand and
stochastic waste (scrap) rate is proposed. In the two-stage
stochastic program, production decisions are made before
the demand occurrence, as opposed to the “wait-and-see”
approach where decisions are made after the reveal of the
random variable values [8, 9, 11, 14]. We make decisions
about production amounts, skiving patterns, and the
number of each replicated skiving pattern before any sce-
nario occurs, as they are scenario-independent decision
variables. In the second stage, the scenario-dependent de-
cision variables are the underproduction and over-
production quantities. Tese variables represent the
measures taken under possible scenarios. Furthermore,
a two-phase procedure is applied to solve the problem,
where the frst phase produces the minimum skiving pattern
set and the second aims at minimizing production costs.Tis
two-phase procedure continues recursively until the target
production quantity is obtained. In the frst phase, we im-
plement the dragonfy algorithm (DA) [15] and generate the
skiving patterns. Tis frst phase’s output serves as the
second-stage’s input, where we implement a range of sce-
narios combining random variables. Te sample-average
approximation (SAA) method for the two-stage stochastic
programming model is used to obtain a solution to the SSP
[13, 16].

Te terms “two-phase” and “two-stage” are not in-
terchangeable. Te overall solution process is referred to as
“two-phase.” Te frst phase refers to the DA that generates
the skiving patterns.Te second phase refers to the two-stage
stochastic programming with a recourse action model that
minimizes the expected total production cost. Tis study is
a single-objective analysis that minimizes the total pro-
duction cost. However, it also aims tomaintain an acceptable
trim loss level as a DA goal in the frst phase.

Te paper is structured as follows: the next section re-
views the relevant literature, and Section 3 outlines the
stochastic SSP. Te methodology is presented in Section 4.
Tis section is followed by an illustrative example in Section
5. Numerical experiments and discussions are provided in
Section 6, together with the computational complexity
discussions. Finally, in Section 8, the conclusions and future
work are presented.

2. Literature Review

Te SSP was initially proposed by Johnson et al. [17] as an
incorporated part of the CSP. Tey unifed the CSP and the
SSP into a single problem called the cutting and skiving stock
problem (CSSP). Te CSSP modeled the cutting and skiving
of large products in a two-step framework. A pattern-based
mathematical formulation and commercially available
software (MAJIQTRIM) are proposed using heuristics and
linear programming to solve the CSSP. It was only when Zak
[1] carried out a theoretical analysis comparing the SSP and
the CSP models that the SSP was recognized as a problem in
its own right. Zak’s study [1] proved that the SSP is not the
dual form of the CSP. According to Zak [1], the SSP shares
some input data similarities with the CSP in terms of item
widths, consumer demand, and scalar knapsack capacity.
However, the SSP and the CSP have diferent pattern ma-
trices due to their diferent structures. Te CSP is structured
as a set-packing while the SSP is structured as a set-covering
[18]. Following these fndings, Zak [1] reported that the SSP
is not the dual form of the CSP and launched SSP as a stand-
alone challenge in combinatorial optimization [1, 19].
Martinovic and Scheithauer [20–22] stated that the SSP is
structure-wise closer to the dual bin packing problem
(DBPP), also referred to as a particular type of the bin
covering problem (BCP). However, the SSP difers in being
expressed and solving from the DBPP [1]. Martinovic and
Scheithauer [20] pointed out these diferences as the level of
heterogeneity of item sizes and their available quantities
based on the study of Wäscher et al. [18]. According to this
study [18], the SSP is associated with items with low het-
erogeneity. In contrast, DBBP contains very heterogeneous
items. Furthermore, the DBPP formulation regards the
presence of each small item type as one [23]. Zak [1] has
extended this problem by incorporating higher availability
values for small items. Ultimately, item-oriented models and
heuristics are used in the mathematical formulations and
solution approaches of the DBPP.

Te SSP is challenged by fnding integer solutions for
large problems, as with CSP. Consequently, the most
common way is to obtain a linear relaxation and then
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discretize the solution. Arbib et al. [2] used a column
generation (CG) [24] and a branch-and-bound (BB) algo-
rithm to solve the CSSPwith cutting loss minimization in the
production of transmission belts. Tey extended the single-
period CSSP model proposed in [2] to a multiperiod
problem in which a BB algorithm solves a CSSP with a small
size [25]. In a similar study, Zak [1] presented CG [26] for
the linear relaxation of the problem and a (BB) algorithm to
obtain integer solutions for the SSP. Meanwhile, Gilmore
and Gomory’s [24, 26] pattern-based model and column
generation (CG) for the large-scale CSP are also convenient
for the SSP [1]. Furthermore, the pure SSP can be catego-
rized as an output maximization based on Wäscher
et al. [18].

In addition, the 1D-CSP with a skiving option is by
Ágoston [3] for a fre-fghting system, where single-sized
pipes are cut into smaller pipes, and the residual parts can be
joined using the skiving technique to produce extended
pipes. Te process allows only one welding operation on the
pipe for safety reasons. Ágoston also transformed the CSP
into a mixed-integer linear programming (MILP) model,
which includes sequential cutting and welding patterns, and
proposed a three-stage algorithm that minimizes inventory
and the cost of diferent patterns. Karaca et al. [27] proposed
two solution methods for the biobjective SSP, where the frst
objective is to minimize trim loss and the second is to
minimize the number of welds in a product for quality and
sustainability reasons [28]. Tey proposed CG and B&B
algorithms as exact solvers and the dragonfy algorithm
(DA) integrated with the constructive heuristic and a heu-
ristic approaches. Finally, they presented comparative re-
sults of these two methods regarding solution quality and
computational complexity.

Karaca et al. proposed the DA for the pattern generation
procedure, stating that, unlike the CSP, metaheuristics are
under-utilized in the SSP realm. Well-known metaheuristics
in this area are Tabu search [29], simulated annealing (SA)
[30–32], ant colony optimization (ACO) [33], and its var-
iants or hybridizations [34], genetic algorithm [35–37],
genetic symbiotic algorithm [38], evolutionary pro-
gramming (EP) [39], and hybrid chemical reaction opti-
mization (CRO) [40].

Te studies mentioned above involve numerical
implementations and real-world applications of the SSP.
Nevertheless, the literature also ofers theoretical analyses.
Martinovic et al. are considered one of the most important
pioneers of theoretical analysis of the SSP literature
[4, 5, 19–22, 41]. In addition to the pattern-based SSP model,
Martinovic and Scheithauer [20] presented three graph-
theory-based models for the SSP. Tey further investigated
the continuous relaxations of these models to prove their
equivalences with the pattern-based model. In a latter study,
Martinovic and Scheithauer [21] formalized the gap between
the continuous relaxation value and the optimal objective
function value. Tey also proposed a modifed version of the
best-ft algorithm to improve the upper bound of the op-
timality gap for the divisible case. Moreover, they in-
vestigated the proper relaxation concept using the proper
pattern set, which gives tighter bounds than continuous

relaxation [21]. Tey analyzed the integer round-down
property (IRDP) and modifed integer round-down prop-
erty (MIRDP) and noninteger round-down property (non-
IRDP) in discretizing the obtained solutions [21]. In [22],
furthermore, Martinovic et al. [5] improved the standard arc
fow model, which was previously presented in [20] by
incorporating reversed loss arcs and minimizing the number
of arcs, which dramatically reduced the execution time.Tey
presented a new theoretical approach based on hypergraph
matching to develop a relaxation by evaluating the proper
gap for skiving stock instances. Tey benefted from the
polyhedral theory to characterize IRDP instances for the
SSP [19].

In parallel to the theoretical analysis, Martinovic et al. [4]
also considered the problem of spectrum aggregation for
cognitive radio as a real-world application of the SSP. Tis
problem concerns the allocation of the radio network
spectrum availability, in which the primary user allocates
predetermined portions of a frequency band. Existing
bandwidths, or spectrum holes, were too limited to support
secondary users’ bandwidth needs. Tey analyzed aggre-
gating free spectrum holes to supply sufcient bandwidth to
secondary users under hardware limitations [4]. Tey
compared the standard SSP model based on the Zak, solved
by the column generation method, to an arc fow model and
an assignment model. Computations showed that the as-
signment model resulted in a signifcant reduction of the
computational complexity.

Te stochastic SSP literature is minimal, and it is possible
to use solution methods previously employed in the CSP.
Terefore, we also elaborate on the stochastic CSP literature
in this section. Te majority of the methods implement
problem-based heuristics and various stochastic pro-
gramming approaches. Te CG is the most commonly ap-
plied method to retrieve an initial, noninteger solution
[8, 42, 43]. Alem et al. [8] implemented a CG for a two-stage
stochastic programming model where the demand was
random in the CSP. Jin et al. [43] implemented a two-stage
stochastic integer programming for the CSP that makes
inventory replenishment decisions in the frst-stage and
cutting decisions in the second stage. Moreover, the CG is
used for the LP relaxation for the cutting stock problem, and
the residual heuristic is used to obtain integer solutions.
Another solution methodology for the stochastic CSP by
Demirci et al. [42] uses the CG and the L-shaped algorithm.
Chauhan et al. [44]’s CG and BB approach was accompanied
by both a fast pricing heuristic and a marginal cost heuristic
in a stochastic problem where the demand is random. As an
alternative method to CG, Beraldi et al. [9] suggested a two-
stage stochastic programming model with Lagrangian de-
composition and BB to decompose the problem into sub-
problems. Tese subproblems are fed into a proposed
heuristic in the second stage. Moreover, Sculli [45] con-
sidered defects as random variables due to the winding
process in the CSP. José Alem and Morubito [46] employed
stochastic demand and set-up times for cutting patterns in
furniture production. Zanjani et al. [10] presented a two-
stage stochastic linear programming (LP) approach for the
CSP where yields are random variables with discrete
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probability distributions. Tey used the sample-average
approximation (SAA) scheme to approximate the prob-
lem to avoid high computational time caused by numerous
scenarios in stochastic programming.

Tis study extends Zak’s standard pattern-based SSP [1]
by including production, set-up, and raw material costs.
Having the quantity of each raw material as a decision
variable also converts the model into an assortment prob-
lem. Moreover, the multiproduct version is adapted to the
standard pattern-based SSP model [1, 4]. Te main con-
tribution of our study is to handle diferent sources of
uncertainty: the product demand and the waste rate. First,
the DA produces skiving patterns. Te later stage deals with
uncertainty in the SSP by a two-stage stochastic pro-
gramming model with recourse formulation [11]. Further-
more, we implement an SAA approach [13] to cope with
a large number of scenarios and previously applied in ex-
tensive problems such as supply chain network-based
decision-making [47, 48]. Finally, a recursive solution
procedure between the DA and the SAA is developed for the
large-sized stochastic SSP under uncertain demand and
waste rate.

3. The Stochastic Skiving Stock Problem under
Uncertain Demand and Waste Rate

3.1. Te SSP Defnition and Mathematical Formulation.
Basic defnitions and the formulation for the SSP [4, 19–21]
are presented as follows: E ≔ (m, l, L, b) is the SSP instance,
with m is the number of small item types. l is an m-di-
mensional vector representing the width of each type and is
composed of li, where i ∈ I and |I| � m and L is large item
width [4, 19–21].

Large items with a minimum width of L should be
produced during the skiving process. Moreover, b is an
m-dimensional vector consisting of bi which represents the
availability of each small item type [4, 19–21]. For the sake of
clarity and standardization of terminology, small and large
items will be referred to as items and products throughout
the rest of the study. All input data are positive integers (Z+)
and satisfy L> l1 > . . . > lm as a sorted set. Every feasible set
of items for constructing a product with a minimum width

of L is called a a feasible pattern of the E. Any feasible pattern
can be described by a nonnegative vector a � (ai, . . . ,

am)T ∈ Zm
+ , and ai ∈ Z+ is the number (repetition) of ith item

in a pattern. Finally, P(E) ≔ a ∈ Zm
+ | lTa⩾L􏼈 􏼉 represents

a feasible set of patterns [4, 19–21].
Te minimal pattern is one where the product width is

less than the threshold value L if any element is dropped
from the pattern. In plain expression, there is no feasible
pattern 􏽥a ∈ P(E) such that 􏽥a≤ a holds component-wise
(􏽥ai ≤ ai,∀i ∈ I). A minimal pattern set (or set of minimal
patterns) is denoted byP∗(E) [4, 19–21]. Also, a pattern with
index jaj ∈ P∗(E) is an exact pattern if lTaj � L, so every
exact pattern is a minimal pattern. xj is the decision variable
indicating the repetition of the pattern j, aj � (a1j, . . . ,

amJ)
T where aj ∈ Zm

+ , where j represents the index of the
pattern. To conclude, the objective function of the SSP
objective function is defned as follows [4, 19–21]:

z
∗
(E) � max 􏽘

j∈J∗
xj 􏽘

j∈J∗
aij

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
xj ≤ bi, i ∈ I, xj ∈ Z+, j ∈ J∗

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(1)

Furthermore, a minimal pattern aj ∈ P∗(E) which sat-
isfes aij ≤ bi,∀i, j is called a minimal proper pattern. In
a sense, a minimal proper pattern also meets the item
availability constraints for a given production quantity of
each product. Else, it is a nonproper minimal pattern
[4, 19–21]. We extend and defne the propriety for the
pattern set, as well. A proper minimal pattern set is denoted

as P∗P(E | xj) ≔ a: aj ∈ P∗(E), 􏽐
j∈J∗

aijxj ≤ bi, i∈ I
⎧⎨

⎩

⎫⎬

⎭, that is,

the patterns in P∗P(E) can produce a predetermined pro-
duction amount with the available items.

Furthermore, without loss of generality, E ≔ (m, l, L, b)

is extended by including multiple products of various
widths, defned as the multiproduct case as E ≔ (m, K,

l, L, b) where K represents the product type number. k is the
index of product type k ∈ K ≔ 1, . . . , K. L is no longer
a constant but a vector of widths. xjk refers to the amount of
pattern j used to produce product k.Ten, the formulation is
extended as follows:

z
∗
(E) � max 􏽘

j∈J∗
􏽘
k∈K

xjk 􏽘
j∈J∗

aijk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
xjk ≤ bi, i ∈ I, xjK ∈ Z+, j ∈ J∗, k ∈ K

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (2)

3.2. Standard Formulation of a Two-Stage Stochastic Pro-
gramming (SP) Model. Tere are several applications of the
two-stage stochastic programming in literature, such as the
air freight hub location and fight routes planning where the
demand is random [49], supply chain planning in which the
capacity of facilities and the customer demand are random
[48], and the sawmill production planning problem in which
the yield of production is random [10]. Below, we present the
general framework.

Assume that ξ is a random vector that holds realizations
of each scenario. Te decision variables whose values must
be decided before observing the actual values of ξ are called
the frst-stage decision variables. An instance of such a de-
cision variable is denoted by the vector x. When any scenario
occurs, it reveals the complete information on the random
variables in ξ, and their values become known. Any decision
after ξ is known as a second-stage decision variable or the
recourse action, denoted by vector y. It is important to
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emphasize that the recourse action depends on both the frst-
stage decision variables and the outcomes of random var-
iables. In other words, the two-stage stochastic pro-
gramming recourse action model can respond to each
possible outcome of random variables using the second-
stage decisions (the recourse action).

Te general formulation of A two-stage stochastic
programming (SP) model with recourse general formulation
is given as follows [11–13]:

min
x

C
T
x + EξQ(x, ξ), (3)

s.t. Ax � b,

x≥ 0,
(4)

where Q(x, ξ) � min qTy|Wy � h −Tx,y≥ 0􏼈 􏼉. Te random
vector ξ is formed by the qT, hT, and T components, where
Eξ is mathematical expectation according to ξ where T is the
technology matrix, h is the right-hand-side values, W is the
recourse matrix, and qT is the penalty cost vector of recourse
decisions [11].

In the general formulation of the two-stage stochastic
programming in equation (3), each value combination for
the random variables in ξ corresponds to the scenario
s ∈ S ≔ 1, . . . , S with the probability Ps. Terefore, equation
(3) can be written in the form of the stochastic model as
follows [11]:

minxC
T
x + 􏽘

s∈S
PsQ

s
(x, ξ), (5)

where Qs(·) refers to the value of the Q(x, ξ) under
scenario s.

3.3. Mathematical Formulation of the Stochastic SSP under
Demand and Waste-Rate Uncertainties. In the nomencla-
ture, we solely list the notation used for the stochastic SSP
model. It should be noted that the diferent phases of the
solution methodology will also use their own notations as
described in Section 4.

We transform the original SSP into a cost-minimization
problem by including the production, raw material, set-up,
overproduction, and underproduction costs. Furthermore,

the demand Dk and the approved product rate Υk are the
random variables for each product k � 1, . . . , K. Υk, also
known as the yield efciency, is the rate of approved
products after discarding the production waste. In this study,
we will assume the same random yield efciency for all
products, which reducesΥk toΥ, resulting in a total of K + 1
random variables. Each combination of the values for Dk

and Υ corresponds to a scenario indexed by s ∈ S ≔ 1, . . . , S

with the probability Ps such that Ps ≥ 0 and 􏽐s∈SPs � 1.
Finally, each scenario realization for every random variable
is represented as D(s) � (ds1, . . . , dsK) and Υ(s) � υs. Both
random variables constitute the base for the mathematical
model in the two-stage stochastic programming with
recourse.

We partition the decision variables of the stochastic
model into two parts: the frst-stage and second-stage de-
cision variables. Te frequency of each pattern for each
product denoted by the matrix x is a frst-stage decision
variable composed of xjk’s. Another frst-stage decision
variable is the raw material needed, denoted by the vector r

and composed of ris. Finally, the last frst-stage decision
variable is the vector y, denoting the set-up change decision
yj,∀j. Te values of a and Δ are obtained using the DA
before solving the SP. Te amatrix has the values of aij, and
the Δ matrix holds the δjk values. Tese values fed into the
frst stage of the SP as parameters. Te overproduction and
the underproduction amounts (q+

sk, q−
sk) are the second-stage

decision variables and depend on the scenario and the frst-
stage decisions. Ten, we can construct the frst-stage ob-
jective function as follows:

min 􏽘
i∈I

C
R
i ri + 􏽘

k∈K
􏽘

j∈J∗
C

O
yj + C

Pr
xjk.

(6)

Moreover, s ∈ S, Qs is the Q(·) function provided in
equation (5) for scenario s and is defned as follows:

Q
s
(x, ξ) � min 􏽘

k∈K
C

H
k q

+
sk + C

B
k q

−
sk. (7)

Finally, by using equations (5) and (6), and the no-
menclature, the deterministic equivalent of the stochastic
SSP model with the instance E ≔ (m, K, l, L, b) is given
through equations (8)–(17), and we obtain the following:

min zSP � 􏽘
i∈I

C
R
i ri + 􏽘

k∈K
􏽘

j∈J∗
C

O
yj + C

Pr
xjk + 􏽘

s∈S
Ps 􏽘

k∈K
C

H
k q

+
sk + C

B
k q

−
sk,

(8)

s.t. 􏽘
k∈K

􏽘
j∈J∗

aijxjk � ri ≤ bi, ∀i ∈ I, (9)

q
+
sk − q

−
sk � υs 􏽘

j∈J∗
xjk − dsk, ∀s ∈ S, k ∈ K,

(10)

xjk ≤Mkyjδjk, ∀j ∈ J∗, k ∈ K, (11)
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xjk ∈ Z+, ∀j ∈ J∗, k ∈ K, (12)

aij ∈ Z+, ∀i ∈ I, j ∈ J∗, (13)

ri ∈ Z+, ∀i ∈ I, (14)

q
+
sk, q

−
sk ≥ 0, ∀s ∈ S, k ∈ K, (15)

yj ∈ 0, 1{ }, ∀j ∈ J∗, (16)

δjk ∈ 0, 1{ }, ∀j ∈ J∗, k ∈ K. (17)

Te objective function is given in equation (8) (zSP)
minimizes both the frst-stage and the second-stage costs.
Te frst-stage costs are composed of the following
components:

(i) Raw material cost: the cost of items used to form
products involves the costs of generating leftovers or
purchasing raw materials.

(ii) Set-up cost: if a pattern is used in the skiving
process, the set-up cost for that specifc pattern is
incurred. However, since recent skiving machines
are fully automated, the diferences between set-up
times of each pattern are assumed trivial. Terefore,
we assume that the set-up cost is fxed and does not
change with a specifc pattern.

(iii) Production cost: an item roll naturally has two
dimensions: width and length. We consider each
item’s variable width and fxed length, resulting in
the 1D-SSP.Terefore, the production time and cost
for the skiving process to form every product are
assumed to be fxed.

Te second-stage costs include overproduction and
underproduction, lost sales or overtime production costs,
and the costs of procuring products from other sellers to
meet the demand. Constraint (9) multiplies the number of
pattern repetitions by the number of items in each pattern to
ensure enough items are available for the amount produced.
Constraint (10) balances the overproduction or un-
derproduction amount at the second stage due to the frst-
stage production decisions and the scenarios. Te set-up
constraint given in equation (11) states that if a pattern is
used, the set-up cost is related to this pattern. Moreover, it
can be used up to Mk times for product k, where Mk is an
upper bound for the number of replications of pattern j in
product k. However, the waste rate might require extra

production. Terefore, a reasonably greater value than the
maximum demand can validate the value for Mks.

Te set-up cost is incurred for every pattern change. As
aforementioned, if multiple products can be produced using
the same pattern, we can avoid excessive set-up costs by
setting this pattern once and producing all products si-
multaneously. Tis way, we do not need to change patterns
and pay the set-up cost only once. For this purpose, we
construct a pattern pool that unites all patterns used in all
products. An auxiliary and dependent binary variable δ
controls the assignment of patterns to products.

Constraints (12)–(15) are integrality and positivity
constraints, and constraints (16) and (17) impose that yj and
δjk are binary variables, respectively. We determine the
values of the decision variables aij in constraint (9) and δjk in
constraint (11) in the frst phase. Since the values of both
variables are determined in the frst phase, we feed them as
parameters for the second phase. Terefore, the fnal model
becomes a stochastic mixed-integer programming (SMIP)
model. We will analyze the performance of the DA using
a larger numerical example in the next section.

3.4. Deterministic Counterpart of the First-Stage Model.
We must check the propriety of PP(E) throughout the
procedure. In other words, whenever we make a production
decision, we must check if we can produce this amount with
the patterns on hand. If not, we can opt for underproduction
or search for new patterns to avoid losing sales.

For this checkpoint, we implement the deterministic
counterpart of the SSP with a small modifcation. Without
the loss of generality, the deterministic counterpart of the
SMIP model given in equations (8)–(17) can be rewritten
using the frst-stage variables and costs. Tis model mini-
mizes the frst-stage cost at a given production amount as
follows:
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min zdet � 􏽘
i∈I

C
R
i r

+
i 􏽘

k∈K
􏽘

j∈J∗
C

O
yj + C

Pr
xjk + Ψkq

−
k ,

(18)

s.t 􏽘
j∈J∗

􏽘
k∈K

aijxjk � ri ≤ bi, ∀i ∈ I, (19)

􏽘
j∈J∗

xjk + q
−
k ≥ upperBoundk, ∀k ∈ K,

(20)

xjk ≤Mkδjkyj, ∀j ∈ J
∗
, k ∈ K, (21)

xjk, ri, q
−
k ∈ Z+, yj ∈ 0, 1{ }, δjk ∈ 0, 1{ }, ∀j ∈ J∗, k ∈ K,∀i ∈ I. (22)

In this deterministic model as shown in equations
(18)–(22), the indices, the frst-stage variables, and the frst-
stage costs are almost the same as the original stochastic
problem given throughout in equations(8)–(17). Te main
diference with the stochastic counterpart is the introduction
of the production upper bound for each product denoted by
upperBoundk in equation (20). Tis upper bound represents
a target production amount (usually dependent on the
demand). Te variable q−

k tracks the lack of each product,
and a penalty cost, Ψk, represents a large number such as
Ψk � CB

k ∗ 100000000,∀k ∈ K forces q−
k to be zero. In other

words, minimizing this objective function forces the total
production of each product to be equal to the upper bound.
Tis deterministic model is used iteratively in the algorithm
to check whether the minimal pattern set generated by the
DA can satisfy a given target production amount. If not, the
algorithm recursively triggers the DA to generate additional
minimal patterns until the target production amount (upper
bound) is satisfed. Briefy, this process controls if additional
patterns are needed, and in this way, it prepares an efcient
pattern set for the next phase, which may improve stochastic
solutions.

4. The Proposed Solution Methodology

In this section, we develop an iterative two-phase solution
methodology for the stochastic SSP. An overview of the
methodology is presented in Figure 1. In the frst phase of the
algorithm, we implement the dragonfy algorithm (DA)
proposed in [15] to produce the minimal pattern set P∗(E).
Tis minimal pattern set P∗(E) is fed into the second phase.
In the second phase, the SMIP presented in Section 3.3 is
solved by the SAA method [13]. Tis process provides
candidate solutions and an upper bound for the production
amount. We frst present each module separately and later
defne the two-phase methodology that integrates these
algorithms, including the DA results in the proposed
methodology, producing a heuristic solution.

4.1. Dragonfy Algorithm Implementation Steps. Te drag-
onfy algorithm (DA) is a method based on swarm in-
telligence. It employs nonlinear Lévy fights in the search
space. Literature refers to the travelling salesman
problem (TSP) [50], optimal dynamic scheduling of tasks

[51], path planning optimization for mobile robots,
moreover, optimization of 0-1 all knapsack problem
versions [52], feature selection problems [53], graph
coloring problems [54], and wind-solar-hydropower
scheduling optimization by employing multiobjective
version [55]. It performs better than PSO and GA when
discrete problems are considered [15]. In this study, the
DA, which was modifed by Karaca et al. [27], is used for
the generation of patterns for each product on a separate
basis by following the steps.

4.1.1. Preprocessing. Te width of item types is used in this
process.

Step 1: items no longer available are excluded from the
set I.
Step 2: the amount of each item i necessary for the
construction of a product k (nik) is calculated such that

nik �
Lk

li
􏼦 􏼧. (23)

Step 3: the item set is extended by repetition of each
item (nik−1) times to get the expanded and sorted item
set I+, so that there are nik of each item. Te compo-
sition of the updated item set is shown in Figure 2.

Assume I+ � |I+|. Tis is the number of items in the
extended set. Furthermore, clh � 􏽐

h
i′�1li′ . In other expres-

sions, clh is the accumulated length of the items from the frst
to the hth position.

In the following, the extended set I+ is introduced into
subsequent stages of the main dragonfy algorithm
framework.

4.1.2. Initializing. Te algorithm parameters are initiated.
Te change in position change (Δpos) is started as a zero
matrix, i.e., 0NoD,􏽥I where NoD is representative of the
dragonfy number. Te maximum iteration number (MaxIt)
is returned.

Step 1: Each dragonfy has a dimension of I+, and each
dragonfy value is a random number uniformly dis-
tributed between 0 and 1. Generating this matrix is
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called as posNoD,I+
. Each row of posNoD,I+

denotes
a dragonfy, that is, a solution.
Step 2: For each dragonfy, the value of the objective
function, the trim loss, is calculated. Let b be the bth

dragonfy’s index. Te objective function of the bth

dragonfy is calculated in the following way:

(1) Sort in decreasing order the bth row of the posNoD,􏽥I
matrix.

(2) We now have the index vector for the values that
have been sorted. Tis order is denoted as [h]

��→
.

(3) Te cl[h] values are summed up until Lk is obtained
such that cl[h−1] < Lk and cl[h] ≥ Lk. Tat is, it will
skip items until it reaches the desired length for
product k.

(4) Te trim loss is computed as 􏽐
h′

h�1l[h] − Lk.

Otherwise specifed, the indexes of the values of the
dragonfy are sorted in descending manner. Next, re-
moving elements is started in this order until the
product length is reached. As an illustration, assume
the starting set is 6, 5, 3{ }, the extended and sorted sets
I+ � 6, 6, 5, 5, 3, 3, 3{ }, and the product width Lk � 9.
Suppose a dragonfy has the vector with
[0.35, 0.45, 0.21, 0.76, 0.87, 0.98, 0.07] values. In this
case, the sorted index vector is [h]

��→
� [6, 5, 4, 2, 1, 3, 7],

meaning that the sixth dimension of the dragonfy is the
largest and the ffth dimension of the dragonfy is the
second largest. So cl[1] � l6 � 3, meaning that if the frst
order item is used, the length of the fnal product would
be three units, which is less than Lk, so the skiving
process goes on with the second-order item. If the next
item is skived, cl[2] � l[1] + l[2] � l6 + l5 � 3 + 3 � 6 is
obtained. If the length obtained is still less than the
desired threshold value for the product length, con-
tinue the skiving process with cl[3] � l[1] + l[2] +

l[3] � l6 + l5 + l4 � 3 + 3 + 5 � 11. Te threshold prod-
uct length of Lk is satisfed by these three skived items.
So, the skiving process is stopped. For example,
a dragonfy consisting of the vector
[0.35, 0.45, 0.21, 0.76, 0.87, 0.98, 0.07] denotes a prod-
uct consisting of two elements of length 3 and one
element of length 5, giving a product of length 11.
cl[3] − Lk � 11 − 9 � 2 is the trim loss of this product.
An essential tip is to maintain the positions of the
dragonfies between 0 and 1 throughout the algorithm.
Tis adjustment prevents extreme position values.
Te trim loss of each dragonfy is calculated, and the
objective function value vector, f

→
NoD, is obtained after

decoding each dragonfy in the swarm. Each value of
the vector is an indication of the objective function of
a particular dragonfy.
Step 3: Te food source and the enemy are updated as

food � posb,∗: fd � minb′ f
→

, b
′
� 1, . . . ,NoD􏼚 􏼛,

enemy � posb,∗: fd � maxb′ f
→

, b
′
� 1, . . . ,NoD􏼚 􏼛.

(24)

Step 4: Suppose the instantaneous iteration is t. Te
neighborhood border is updated as t/MaxIt. For each
dragonfy, if there are no dragonfies in the neigh-
borhood, a Lévy fight is used as described as follows
[15]:

Δposb,∗(t) � posb,∗·0.01
r1A

r
1/B
2

, (25)

where r1 and r2 are random values between 0 and 1 in
which B is a customized parameter by the user and A is
calculated as

Has the 
upper bound 

increased ?

START Modified Dragonfly
Algorithm

Sample Avarage
Approximation

Yes
Candidate
solutions

Pattern
set

STOP

No

Figure 1: Recursive two-phase algorithm for the stochastic SSP.

................................................................................................ ................................. lililil2l2l2l1l1l1

n1k n2k nik

Figure 2: Extended and ordered item sets.
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A �
Γ(a + B)sin(πB/2)

Γ[(1 + B)/2]B2(B−1)/2􏼢 􏼣

1/B

. (26)

If there is at least one dragonfy in the neighborhood,
then a weighted composite separation, alignment,

cohesion, food source approach, and enemy escape
vectors are computed, and the dragonfy’s position
change is as follows:

Δposb,∗(t) � αSepb + βAlnb + cCohb + η food − posb,∗􏼐 􏼑 + ϵ enemy + posb,∗􏼐 􏼑 + ωΔposb,∗(t−1), (27)

where α, β, c, η, ϵ are given and tuned coefcients, ω is
the inertia rate. food and enemy are the dragonfy
positions with the best and worst objective function
values. Suppose that Λb is the set of dragonfies in the
neighborhood of the bth dragonfy and λb is the number
of neighboring dragonfies.Te separation factor (Sepb)
prevents the dragonfies from colliding. Te alignment
(Alnb) and cohesion (Cohb) factors allow the drag-
onfies to use the search space with similar speeds and
positions. Te following formulae are used to calculate
these components separately [15]:

Sepb � 􏽘

b′∈Λb

posb,∗ − posb′ ,∗,

Alnb �
􏽐b′∈Λb
Δposb′,∗ (t − 1)

λb

,

Cohb �
􏽐b′∈Λb

posb′ ,∗

λb

− posb′ ,∗.

(28)

Step 5: Te change in position is updated by means of
the velocity and the inertia of the change in position
such that

posb,∗(t) � posb,∗(t − 1) +Δposb,∗. (29)

Dragonfy positions are held between 0 and 1, so if the
dragonfy position exceeds these limits in any di-
mension, the position will adjust to the closest border.
Step 6: Steps 2–5 are iterated until the maximum it-
erations are achieved.
Te result of the algorithm is the minimum trim loss
dragonfy, but it produces an extended and sorted
version of the items. Each of the best dragonfies with
the same objective function value constitutes a pattern.

4.1.3. Postprocessing. Tis process breaks down the pattern
and calculates the amounts of items in each pattern. Assume
that the dragonfy given in the illustrative example is the best
dragonfy and the outcome of the algorithm. Tis pattern
uses two items with a width of 3 and one with a width of 5.
For the initial set of items with lengths 6, 5, 3{ }, the best
dragonfy is decoded as [0, 1, 2]T.

It should be kept in mind that diferent extended
dragonfies can result in the same pattern. For example, let
another dragonfy be [0.15, 0.25, 0.11, 0.56, 0.77, 0.08, 0.89].
Tis dragonfy also uses two items with length 3 and one
item with length 5.

Te DA creates a minimal pattern pool to be used as
a parameter in the SP model as shown in equations (8)–(17).
Te produced minimal pattern pool is not necessarily
proper. Te propriety of the pattern pool is determined as
a result of the second phase, the sample-average approxi-
mation (SAA) algorithm.

4.2. Te Sample-Average Approximation (SAA) Algorithm.
SAA is implemented for large-size stochastic problems that
cannot be solved easily by using exact solution methods
because of the large number of scenarios. SAA approximates
the objective function by using generated samples of sce-
narios. Te SAA generated N realizations of (n � 1, 2, . . . , N)
of the random vector ξ. Tese realizations are denoted by
ξ1, . . . , ξN. Ten, the expectation EξQ(x, ξ) is approximated
by the sample-average function N− 1 􏽐

N
n�1Q(x, ξn). Finally,

the original problem (8)–(17) is approximated by the SAA
problem [10, 16, 56], where Q(x, ξ) is the objective function
involving decision variables x and random variables ξ.
According to Saphiro [57], SAA provides good convergence
and robust statistical inferences, including analysis of error,
stopping rules, and validation, and it is easy to implement
with commercial software. Te steps of the SAA are given as
follows [56]:

Initialize: Generate G, (g � 1, 2, . . . , G), random sam-
ples from the distribution of random variable ξ, each of
them is independent and identically distributed and has
a sample size N where |Ng| � N. Also, generate
a sufciently large reference sample where N′ ≫N.
Step 1: Solve the problem (30) and optimal objective
function value vg and candidate solution xg for each g.

minx C
T
x +

1
Ng

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘
N

n�1
Q x, ξn( 􏼁. (30)

Step 2: Compute vG average (31) which is the unbiased
estimator of the objective function of the original
problem v∗ and variance 􏽢σ2vG (32) of the objective
function values obtained in the frst step.
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v
G ≔

1
G

􏽘

G

g�1
vg, (31)

􏽢σ2vG ≔
1

G(G − 1)
􏽘

G

g�1
vg − v

G
􏼐 􏼑

2
. (32)

Step 3: Solve the problem g times with sample size N′

(33) by using each candidate’s solution xg of each g in
order to fnd 􏽢vg for each and calculate 􏽢σ2􏽢vg (34).

􏽢v
g ≔ minx C

T
x

g
+

1

N
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

N′

n�1
Q x

g
, ξn( 􏼁, (33)

􏽢σ2􏽢vg ≔
1

N
′

N
′
− 1􏼒 􏼓

􏽘

N′

n�1
C

T
x

g
+ Q x

g
, ξn( 􏼁 − 􏽢v

g
􏼐 􏼑. (34)

Step 4: Compute the estimation of the optimality gap
for candidate solution gapg(xg) (35) and the variance
of the optimality gap 􏽢σ2gapg

(36) to analyze the quality of
the candidate solution.

gapg x
g

( 􏼁 � 􏽢v
g

− v
G

, (35)

􏽢σ2gapg
� 􏽢σ2􏽢vg + 􏽢σ2vG . (36)

Step 5: Select the xg as an approximate solution of the
SAA problem (xSAA) that provides the best 􏽢vg, i.e.,
xSAA � argminvSAA where vSAA � ming�1,...,G􏽢vg.

According to Ahmed and Saphiro [58], the lower bound
for v∗ is provided by vG, and the upper bound for v∗ is
obtained by 􏽢vg. Te optimal objective function value of the
SAA problem converges to the optimal objective function
value of the original problem in equation (3) with probability
1.00 as sample size N goes to infnity (N⟶∞) [59]. A
larger sample size ensures a stricter approximation. How-
ever, it also increases the computational complexity [57].
Terefore, using small independent and identically dis-
tributed (i.i.d) samples is more efcient than a large sample
size. Te SAA algorithm is based on this principle. Te
complexity increases exponentially as the sample size in-
creases, especially for the integer problems [60]. Tis in-
crease in complexity eventually causes a trade-of between
the approximation quality and computational complexity.

4.3. Te Two-Phase Solution Methodology. As shown in
Figure 1, we implement an iterative approach in two phases:
(i) the DA and (ii) the SAA algorithm. In a nutshell, the DA
initially uses the information of items and products to return
a set of patterns. Tis set of patterns is called a minimal
pattern set. Tis pattern set is fed into the SAA to obtain the
upper bounds of production amounts, as shown in Figure 3.
Tis upper bound also serves as a reference for the highest
production amount. If the patterns found cannot satisfy this
upper bound due to the availability constraints, then the

pattern set cannot be deemed proper. We emphasize that if
predetermined production levels can be satisfed by using
generated minimal patterns, this minimal pattern set is
called a proper set. Te DA is rerun to produce new patterns
to obtain a proper minimal pattern set. Tese new patterns
are, again, fed into the SAA. Tis recursion continues until
convergence is obtained. We defne convergence as no
further change in two aspects: (i) the minimal pattern set and
(ii) the upper bound of production.

Te pseudocode of the methodology is given in Algo-
rithm 1. Below, we defne the parameters and variables used
in the pseudocode:

zSP: the objective function value of the stochastic model
given through equations (8)–(17)
x

g

jk: the candidate’s solution xjk (the amount of pattern
j in product k) of sample g, obtained by solving for zSP,
g � 1, . . . , G

prodLevelk(g): the total production amount for
product k ∈ K obtained by 􏽐j∈Jx

g

jk for sample g,
g � 1, . . . , G

maxProdLevelsk: the maximum total production for
product k ∈ K among all samples maxg�1,...,G

prodlevelk(g) � maxg�1,...,G􏽐j∈Jx
g

jk

stepsizek: the expansion amount in the search space for
product k ∈ K
upperBoundk: the extended maximum production
amount for product k ∈ K calculated by summing
stepsizek and maxProdLevelsk

zdet: the objective function of deterministic counterpart
model equations (18)–(22)
outputk: the total production for product k ∈ K ob-
tained through the optimal solution 􏽐j∈Jx∗jk of zdet
equations (18)–(22)

We explain the detailed steps of the proposed approach
as follows.

4.3.1. Generation of the Initial Minimal Pattern Set. In the
proposed approach, the DA initially obtains a pattern set
P∗k (E) for product k, k ∈ K. It searches the patterns with the
minimal trim loss, the extra width of the product that
exceeds the width threshold, Lk, for each product. A pattern
can be minimal for at least one product; some patterns can
be common among multiple products. Using one pattern
for multiple products can decrease the set-up cost for each
pattern change during production. Terefore, we aggregate
all patterns for all products into a minimal pattern set pool,
P∗(E) � ∪ k∈KP∗k (E). Additionally, we generate a binary
pattern-product matrix, Δ, to tabulate the matches between
patterns and products. δjk � 1 if pattern j is a minimal
pattern for product k, and 0 otherwise. Te outputs of DA
are P∗(E) and Δ. Both outputs of this phase serve as input
parameters for the second phase. Due to the wordiness of
the term and in the interest of simplifcation, we will refer
to a “minimal pattern set” as simply a “pattern set”
further on.
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4.3.2. Obtaining the Initial Production Amounts. As afore-
mentioned, the mathematical model receives P∗(E) and Δ as
parameters. If we run the SAA algorithm with this pattern
set, we reach the optimal solution for only this pattern set. A
diferent pattern set could return a diferent optimal result

for this particular set. Terefore, the initial pattern set does
not provide direct answers to the following questions:

(1) Does the pattern set involve the pattern combinations
that produce the products at a global optimal cost?

scenario 1
........
........
........
scenario N

scenario 1
........
........
........
scenario N

scenario 1
........
........
........
scenario N

SAMPLE 1

SAMPLE 2

............

............

............

SAMPLE G

stochastic
programming

stochastic
programming

stochastic
programming

...............

................

................

candidate solution 1

candidate solution 2

candidate solution G

M
in
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al

 P
at

te
rn

 S
et

pattern set

production levels

Figure 3: Te recursion between the DA and the SAA.

(1) START;
(2) Determine parameter values and descriptors;
(3) Set bi

′ � bi, bi �∞,∀i, iteration � 1, maxProdLevelsk(0)� 0;
(4) Run the DA to generate the pattern set P∗(E) that has a minimum trim loss;
(5) Run the SAA submodule;
(6) while maxProdLevelsk(iteration)>maxProdLevelsk(iteration − 1) do
(7) while∀k, upperBoundk > outputk do
(8) Run the DA to generate the additional pattern set P′(E) that has a minimum trim loss;
(9) P∗(E) ≔ P∗(E)∪P′(E);
(10) solve deterministic min SSP using P∗(E); xjk ≔ argmin(zdet) equations (18)–(22);
(11) Compute ∀k, outputk � 􏽐j∈Jxjk

(12) end
(13) Set minimal proper pattern pool P∗p(E) ≔ P∗(E);
(14) bi � bi

′,∀i, iteration � iteration + 1;
(15) Run the SAA submodule (Section 4.2);
(16) end
(17) STOP;
(18) SAA Submodule
(1) Run the SAA (Section 4.2), x

g

jk ≔ argming�1,...,G(zSP), equation (30), using P∗(E) or if available, P∗p(E);

(2) Obtain candidate production amounts for each sample; ∀g, prodLevelk(g) � 􏽐j∈Jx
g

jk;

(3) Select maximum production amount for each product; ∀kmaxProdLevelsk � max(prodLevelk(g));
(4) Compute upperBound using step size; ∀k, upperBoundk � maxProdLevelsk + stepsizek;
(5) Solve deterministic min SSP using P∗(E); xjk ≔ argmin(zdet);
(6) Compute ∀k, outputk � 􏽐j∈Jxjk;
(7) end

ALGORITHM 1: Te two-phase solution methodology.
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(2) How does the global optimal solution compare to the
optimal solution of this pattern set?

(3) Are the item availabilities enough to produce either
optimal amount?

Terefore, the quality and the sufciency of this initial
pattern set still need to be discovered. For this purpose, we
frst calculate a sufciently high reference production
amount for all products. As the iterations continue, we
observe the changes in the production amounts and the
growth in the pattern set. Based on these changes, we can
clarify the answers to the questions above throughout
iterations.

Recalling the defnition, for a pattern set to be proper, the
patterns in a set should have sufcient availability to produce
given target production amounts. A nonproper pattern set
indicates that the patterns from the DA are insufcient, and
we should generate more patterns to produce the target
production amount. Terefore, it is only possible to com-
ment on P∗(E) being proper with a target production
amount.

To this end, the frst recursion of the SAA (equations
(8)–(17)) solves a relaxed model with no availability con-
straints (by ignoring the constraint given in equation (9)) to
obtain initial reference production amounts for each sample
as presented in Figure 3. In fact, the constraint relaxation
method is applied for the problem to obtain the lower bound
of expected global optima for the cost function, and the
results refect the optimal production amounts given the
pattern set on hand without availability constraint [61]. We
generate G number of samples, each with a sample size N, to
apply the SAA approach that solves the SMIP presented in
Section 3.3. Each sample may result in a diferent solution
(i.e., varying optimal production amount). Consequently, we
may have diferent production amounts (candidate solu-
tions) for each sample denoted by prodLevelk(g). P∗(E)

being proper (i.e., identical to P∗p(E)) means that it con-
stitutes a proper pattern set for all scenarios and samples. If
P∗(E) can produce the highest production amount
(maxProdLevelsk), then it can produce all candidate solu-
tions. Terefore, as the initial reference level, we calculate
maxProdLevelsk � max g: g�1,...,G{ }prodLevelsk(g). Figure
4(a) shows such production levels for two products.
Figure 4(a) displays the maximum production levels for two
products.

4.3.3. Calculation of the Upper Bounds Using the Step Size.
Te previous step calculates an optimal production amount
for each product based on the pattern set on hand. Tree
possibilities exist regarding the quality of this solution: (i)
the items cannot produce the optimal amount for this
pattern set due to their availabilities, new patterns may or
may not improve the solution, (ii) the available items can
produce the optimal amounts, but the solution could be
improved if there were more patterns available, or (ii) the
available items can produce the optimal amounts, and it is
indeed the optimal solution, and therefore, any pattern
changes would not afect the solution. In either possibility,

new patterns must be generated to observe which case the
solution fts. We construct a trigger for new pattern gen-
eration to understand if the skiving process requires more
patterns than we have. Tis trigger entails increasing the
maximum production amounts by a step size parameter.Te
step size is a preventative measure, especially when the
availabilities are sufcient to produce the upper bounds.Tis
iterative numerical method can be explained as the stepping
approach to convergence to the expected global optima by
fnding better solutions in the search space. Briefy, pro-
ducing the upper bounds indicates that more patterns could
extend the search space and fnd a more afordable solution
than the current one. Since the step size parameter is de-
termined experimentally, it is better to run the algorithm
many times with diferent step size parameters to avoid
escaping better solution points (see Figure 4(b)) for
a snapshot of the production amount and the upper bound
and (see Figure 5) for changes between two consecutive
iterations.

4.3.4. Checking for the Propriety of the Pattern Set (Te Inner
While Loop in Algorithm 1). In the next step, we include the
item availability constraint in equation (9) to check whether
the pattern set on hand can produce this upper bound. In
other words, the propriety of P∗(E) is checked for each
upper bound by using the deterministic model equations
(18)–(22) as presented in Section 3.4. Te deterministic
model itself is not used to solve the original stochastic
problem, but it aids in deciding whether producing the
upper bound is feasible and triggers the DA to generate new
patterns.

Two possible outcomes exist: the items can or cannot
produce the upper bound. Te DA is rerun to produce more
patterns if the available items cannot produce the upper
bound. In Figure 5, the item availabilities cannot produce the
upper bounds, and the availabilities lead to another solution.

While generating additional patterns, denoted by the set
P′(E), the new patterns should not involve any unavailable
items. Similarly, the DA should not reproduce any already-
existing patterns. For this reason, we eliminate any in-
formation regarding unavailable items from the inputs and
only present information related to items that are still
available. Tis adjustment contributes to the generation of
diferent pattern confgurations. Te DA produces the
pattern set P′(E) for every product, and the new minimal
pattern set is joined to the pool as P∗(E) ≔ P∗(E)∪P′(E).
Similarly, the pattern-product matrix Δ is updated by adding
the new patterns. Te pattern generation recursion con-
tinues until either one of the following conditions is satisfed:

(i) Te DA has produced numerous patterns, but the
production of the upper bound is infeasible. Te
total width of the remaining items is less than the
product width, so the pattern set is already
exhaustive.

(ii) Te most recent P∗(E) can produce the upper
bounds, and the minimal pattern set becomes
proper. In this case, we move on to the next step.
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In either case, we pass on to the next stage: solving the
original problem with SAA. However, if the upper bound is
infeasible, we run the SAA once to obtain the fnal results,
knowing we cannot generate any more patterns. We con-
tinue the recursions if P∗(E) is proper.

In Figure 4(c), the items cannot produce the upper
bounds or the optimal amount, per se. Terefore, the initial
pattern set needs to be revised. We rerun the DA until the
upper bounds can be produced. Figure 4(d) shows such
a case.

4.3.5. Solving the Two-Stage Stochastic Programming with
Recourse (Te OuterWhile Loop in Algorithm 1). Te SAA is
run with the most recent pattern set on the original problem
with availability constraints given through equations

(8)–(17) as mentioned in Section 4.3.Tis recursion analyzes
whether the newly added patterns change the previous
optimal solution and the upper bound. If the upper bounds
difer from the previous iterations, the new minimal pattern
set enables diferent pattern-product confgurations than
previous iterations. Figure 4(e) shows the new solution with
the most recent pattern set and the item availabilities. Based
on this solution, Figure 4(f ) fnds the new upper bounds.Te
upper bounds difer from those found in Figure 4(b); hence,
the recursion starts.

4.3.6. Recursion until Convergence. Te recursion between
the pattern generation (Step 4) and the SAA (Step 5) con-
tinues until (i) no further patterns can be obtained, or (ii) the
production amounts and the upper bounds remain the same

Product 1

Product 2

(a)

Initial solution with
no availability

constraint
(Step 2)

Product 1

Product 2 augmented boundries
by step size

(Step 3)

step size

(b)
Product 1

Product 2 the result of the deterministic
equivalent with availabilities

(Step 4)

(c)

Product 1

Product 2 upper bound can be produced
with additional patterns

(Step 4- cont.)

(d)
Product 1

Product 2 new SAA solution with the most
recent P* (E) (involves availability

constraint) (Step 5)

(e)
Product 1

Product 2

(f)

the new
upperbounds (Step

5-cont.)

Product 1

Product 2

(g)

the upperbounds can be
produced with the help of

new patterns

Product 1

Product 2

(h)

the new SAA solution, the
old solution did not change

Product 1

Product 2

(i)

the final solution

Iteration 1

Iteration 2

Iteration 0

Figure 4: (a)Te initial solution is free of item availability restrictions and serves as an initial reference point. (b)Te step size augments the
search space. (c) Te available items cannot produce the upper bound or the optimal point (greyed-out point). Te item availability
constraints are binding and lead to another solution (shown in black). (d) Te DA fnds new patterns and augments the pattern set to
produce the upper bound.Te available items can produce the upper bounds.Tis augmented pattern set is proper. (e)Te SAA fnds a new
optimal solution with item availabilities. (f ) Te new upper bound is calculated and a diferent upper bound than the previous iteration.Te
solution may improve when new patterns are added. We check if this new upper bound triggers new pattern generation. (g) Te existing
pattern set cannot produce the most recent upper bound. Hence, the DA is rerun until it can. (h) Te SAA is rerun with all patterns found.
Te solution is the same as the previous iteration. Te addition of new patterns did not afect the solution. Hence, the production amounts
have converged. (i) Since convergence is caught, we accept this solution as the optimal solution.
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between two consecutive iterations in which the original
problem (problem with availability constraint) is solved in
each iteration. If there is no further change in these outputs,
the pattern set is sufcient to produce the optimal amounts,
and the optimal solution has converged.

In Figure 4(g), we check if the new upper bounds can be
produced with the pattern set from the previous iteration. If
not, the DA produces new patterns, as mentioned in Step 4.
However, Figure 4(g) shows the augmented set that can solve
the upper bounds. When P∗(E) is proper (P∗P(E)), the SAA
is rerun to fnd the optimal solution with the addition of new
patterns as shown in Figure 4(h). Te solution found in
Figure 4(h) is the same as in the previous iteration (as shown
in Figure 4(e)). Te addition of new patterns has not
changed the optimal solution. Te production amounts and
the upper bounds have converged. Terefore, we stop the
algorithm and accept the fnal solution as shown in
Figure 4(i).

With these recursions, the search space boundaries are
dynamically updated through iterations by using step size
(see Figure 4). P∗p(E) is obtained for each production
amount of each sample by checking ifP∗(E) can produce the
upper bounds. Finally, we obtain a solution of the original
stochastic problem [16] as the SAA output. Te recursive
structure is also visualized in Figure 3.

5. An Illustrative Example

In this section, we present a small instance of
E ≔ (m, K, l, L, b) as a stochastic and multiproduct version
of the SSP as an illustrative example. In this example,
E ≔ (3, 2, (500, 400, 300), (1000, 1500, (45, 65, 85))). Te
demand random variables are D1 ∼ Pois(10) and
D2 ∼ Pois(20), respectively. In the illustrative example, the
step size parameter of each product is expressed in terms of

the standard deviation of the demand distributions. It helps
us to track changes in results by changing the standard
deviation multipliers. Terefore, the standard deviations for
the demand are σ1 ≈ 3.16 and σ2 ≈ 4.47. Let dsk denote the
value of the demand for product k ∈ K under scenario s ∈ S.
Furthermore, assume that the random approved product
rate is Υ ∼ N(0.95, 0.0001). CPr � 100 euros per product,
CO � 60 euros per pattern change, and CR � [75 60 45]

euros for each item, i ∈ I. Moreover, let CH � [320 480]

and CB � [800 1200] euros. Initially, we will assume the
step size for each product arbitrarily as 2σ1 and 3σ2 and then
explain the impact of the step size on the solution quality.
Te following illustrates the methodology based on this
example:

Iteration 0
(1) Te DA is run to generate the minimal pattern set

P∗(E). Matrices a and Δ are presented below. Each
column of a represents a pattern, and each row
represents an item. Consequently, each cell aij in-
dicates the amount of item i used in pattern j.

a �

0 0 1 2 3

1 3 1 0 0

2 1 2 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Δ �
1 0 0 1 0

0 1 1 0 1
􏼢 􏼣

T

.

(37)

(2) Te SAA is applied to the relaxed problem (without
the item availability constraint given in equation (9))
with G � 10. Initial reference values for
ProdLevelsk(g) and maxProdLevelsk for all k are
given as follows:
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Figure 5: Te expansion of the search space at each iteration.
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prodLevels �

10 21

10 20

10 21

10 22

11 21

10 21

10 20

10 20

10 21

10 20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒maxProdLevels � 11 22􏼂 􏼃.

(38)

(3) Upper bounds for each product (upperBoundk) are
computed such that upperBound �

11 + 2σ1 22 + 3σ2,􏼂 􏼃 making upperBound1 � 17
and upperBound2 � 33.
Iteration 1:

(4) Te deterministic SSP model in equations (18)–(22)
is used to check whether the minimal pattern set on
hand satisfes the upper bound equation (20) If not,
the DA would have to generate an additional min-
imal pattern set until the upper bound can be

produced. In that case, the proper minimal pattern
set is produced. In our example, the output (solu-
tion) of the deterministic SSP indicates that P∗p(E)

was obtained.

a �

0 0 1 2 3

1 3 1 0 0

2 1 2 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Δ �
1 0 0 1 0

0 1 1 0 1
􏼢 􏼣

T

,

(39)

and by using P∗(E), total production amount for
each product is obtained.

x �
10 0 0 7 0
0 2 31 0 0􏼢 􏼣

T

⇒output � 17 33􏼂 􏼃, then

sinceoutput � 17 33􏼂 􏼃≥ upperBound � 17 33􏼂 􏼃,

P∗p(E) � P∗(E) is obtained.
Since the minimal pattern set is proper, we move on
to generate the SAA result and observe any change in
the upper bounds.

(5) Te SAA is applied to the original problem (with the
availability constraint (9)). ProdLevels, maxProdLevels,
and upperBound are computed.

prodLevels �

10 21

10 20

10 21

10 22

11 21

10 21

10 20

10 20

10 21

10 20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒maxProdLevels � 11 22􏼂 􏼃⇒upperBound � 17 33􏼂 􏼃. (40)

(6) Since the results of the SAA have not changed, and
maxProdLevelsk(1) � maxProdLevelsk(2), ∀k
(maxProdLevels did not increase for either product),
we stop the algorithm.

maxProdLevels(1) � 11 22􏼂 􏼃

≥maxProdLevels(2) � 11 22􏼂 􏼃.

(41)

Recall from Section 4.2, the SAA approach searches for
the solution of Ng instances having N scenarios each given
in the model presented in equations (8)–(17). Te candidate
solutions are evaluated by solving the SAA algorithm with

each solution obtained from Ng instances in the reference
sample N′. In this illustrative example, the number of
samples (G), the sample size for each sample (N), the ref-
erence sample size (N′), the candidate solutions, and the
summary statistics for the objective function values are
presented in Table 1. Monte Carlo sampling is used [16] in
which the sampling takes place before the solution
procedure.

Te DA is coded in MATLAB R2017b, and the SAA is
implemented in GAMS 34.2.0. CPLEX is used as a solver in
GAMS. Te algorithm is executed on a computer with Intel
core i5-3230M, 2.60GHz CPU, and 4GB RAM. Te can-
didate solutions and statistical computations of objective
function values are presented in Table 1. According to this
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table, the frst, third, sixth, and ninth samples have the
smallest expected total costs according to Table 1. Moreover,
the convergence is more robust in these samples since they
have smaller optimality gaps and smaller variances for the
optimality gap than the other samples. Terefore, the results
of the frst, third, sixth, and ninth samples can be denoted as
the best candidate solutions. According to these results, the
production amounts are x1 � 10 and x2 � 20 or 21. G, N, N′

can be increased to obtain a stricter convergence. None-
theless, the increase in computational complexity should not
be overlooked in response to increasing sample sizes.

An important point is that the SAA method solves the
SMIP problem optimally under the pattern set generated by
the DA. Hence, diferent pattern sets may lead to diferent
optimal points. Because the DA performance directly afects
the solution quality, parameter tuning becomes essential to
the DA.

6. Numerical Example and Results

6.1. Numerical Example and Discussions. Tis section
presents a large-sized multiproduct stochastic SSP and its
results. Te instance SSP E ≔ (m, K, l, L, b) is E ≔ (50, 2, l,

(1200, 1300), b) where D1 ∼ Pois(150), D2 ∼ Pois(200) and
σ1 ≈ 12.24σ2 ≈ 14.44 for each product. Te random ap-
proved product rate isΥ ∼ N(0.95, 0.0001). CPr � 100 euros
per product and CO � 60 euros per pattern change, and the
cost of each small item is computed as CR

i � ((li/1000) ∗
3000m) ∗ (0.05 euros/m2), respectively for i ∈ I. Te width
of small items and products is denoted in millimeters.
Moreover, CH � [320 480] euros per product and CB � [800
1200] euros per product. l and b vectors are presented as
lT � [197 195 194 191 185 173 171 168 164 160 156 155 153
152 138 133 131 130 128 120 116 115 114 105 101 99 98 96 91
89 86 76 75 66 64 60 56 49 39 36 31 30 23 19 14 13 12 11 9 6];
bT � [200 300 300 300 300 300 300 300 300 300 300 300 300
100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100].

Te parameters of the SAA are G � 30, N � 100, and
N′ � 400. Similarly, the parameters of the DA are B � 0.05,

α � 0.5, β � 0.03, c � 0.07, η � 0.05, ϵ � 0.05, ω� 0.05. Fi-
nally, the step sizes are 0.6σ1 and 0.75σ2.

We run the algorithm three times with diferentΛb
′� (20,

50, 70) and MaxIt� (10, 20, 30) values to capture the be-
havior of the SAA for diferent P∗p(E). Te statistics for the
computational complexity of the SAA and their de-
terministic equivalents and trial results are presented in
Table 2.

Te objective function values, the optimality gaps, and
the variances of the gaps are highly close to each other.
Because the second trial has the smallest expected total cost,
we can choose P∗p(E) of the second trial. Te candidate
solution of the seventh sample with minimum 􏽢vg can be
determined as the best solution in the second trial, i.e.,
xSAA � argminvSAA where vSAA � ming�1,...,G􏽢vg. Te ob-
tained solution is presented in Table 3.

Te used amount of items is presented as a vector
rSAA � [113 185 22 78 84 245 0 210 298 299 248 107 129 0 0
77 51 0 0 22 99 100 20 51 52 51 0 100 26 71 6 99 100 77 0 26 54
92 0 74 48 26 74 56 0 78 51 6 0 0].

One of the contributions of our algorithm is to obtain the
preferred P∗p(E) by using the minimization model equations
(18)–(22), which controls the propriety of the P∗(E). In our
50-item example, the computational time given in Table 2
displays the time required by the initial proper minimal
pattern set. Even with the enlarged pattern sets, the com-
putational time is around two to three minutes.

We conduct a further sensitivity analysis to analyze the
impact of the step size through diferent multipliers for σ.
Given all other parameters and random variable values
remaining the same, the comparisons regarding various
statistics are presented in Table 4. Te primary efect of the
step size is on the proper minimal pattern set and the
computational time. A larger step size yields a higher
production upper bound, which, as a result, requires
a more extensive pattern set. Te increase in the pattern
set also requires a higher computational time. However, the
most important performance measures are (i) the expected
total cost, (ii) the variance of the total cost, (iii) the op-
timality gap, and (iv) the variance of the optimality gap.
Table 4 shows the average mean and variance of the ob-
jective function values, the optimality gaps, and the average
CPU time (in terms of seconds) of 30 runs of the algorithm.
For a fair comparison, all scenarios are kept fxed for every
step size value. Table 4 visualizes the efect of the step size
on the average objective function value and the CPU time.
As can be seen from the table, even though the step size is
increased more than ten times, the computational time
increased logarithmically. However, the decrease in the
objective function value as the step size increases is much
less signifcant compared to the increase in the computa-
tional time. Te improvement in the objective function
value remains less than 0.1%.

Table 1: Te SAA illustrative example with Monte Carlo sampling
N � 100, N′ � 400, G � 10.

g X11 X32 vg 􏽢vg 􏽢σ2􏽢vg gapg(xg) 􏽢σ2gapg

1 10 21 13662 14047 28934 318 36376
2 10 20 14075 14159 35391 430 42833
3 10 21 13681 14047 28934 318 36376
4 10 22 13657 14085 23186 356 30628
5 11 21 13982 14063 26975 334 34417
6 10 21 13546 14047 28934 318 36376
7 10 20 13279 14159 35391 430 42833
8 10 20 13691 14159 35391 430 42833
9 10 21 14176 14047 28934 318 36376
10 10 20 13537 14159 35391 430 42833

vG � 13729
􏽢σ2vG � 7442
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Even though this study is not a multiobjective analysis of
the stochastic SSP, it also supervises the trim loss. While the
main objective of the SAA is to minimize the total cost
incurred throughout the production process, the DA also
contributes tominimizing the trim loss.Te variable δjk only
allows minimal patterns to be used so that the SAA model
does not allow any nonminimal patterns to be included in
skiving even if the end product satisfes the given thresholds.
A counterargument for this structure is the case of a very
high set-up cost. If the set-up cost is considerably high, the
model may sacrifce the trim loss, and the longest pattern can
be used to manufacture all products. Tis way, the model
avoids paying expensive set-up costs when patterns change.
In such cases, δjk � 1 for shorter products even though the
pattern is not minimal. For example, if the set-up cost was
6000 instead of 60, then the patterns for the second product
(with a width of 1300) could be used for the frst product
(with a width of 1200).

6.2. PerformanceAnalysis for theDA. While the frst phase of
the algorithm uses a metaheuristic, the SAA in the second
phase implements an MIP algorithm under various sce-
narios. Hence, the second phase solves the problem of
optimality under given parameters and scenarios. If the
number of samples and scenarios is sufcient, the result
converges to the optimal solution by the law of large
numbers. Nonetheless, the parameters fed into the second
phase are the results of the DA, which does not guarantee the
optimal pattern set. Hence, in this section, we analyze the
efect of the DA parameters on the objective function value.
Te literature recommends that α + β + c � 1 [15]; hence,

the frst nine rows of Table 5 analyze this case, and the last
nine rows use α + β + c< 1 for slower convergence and
avoiding jumping over the optimal solution. As can be seen
from the table, the mean absolute diference rate between the
highest and lowest values of the average objective function is
approximately 0.3%. For this problem, the DA is robust
against parameter changes and produces an abundance of
patterns.

Further analysis is carried out about the run time of the
algorithm by increasing the number of item types in Figure 6
and the number of product types in Figure 7. According to
both graphics, when the number of item types and the
number of product types increase, the run time increases, as
shown in these fgures. Next, we increase the means of
demand random variables of both product types by using
several growth rates to investigate the relation between run
time and demand quantity (Figure 8).

For further analysis, experiments for several demand
levels were carried out to analyze and compare the per-
formance of the particle swarm optimization algorithm
(PSO) and DA for the model as shown in equations
(18)–(22) (Table 6). For each demand level, PSO and DA are
run fve times, and we recorded the minimum results among
fve runs for the PSO and DA. According to the results, for
the minimization of the total cost, DA is superior to the PSO
for every demand level in the experiments. Moreover, the
CPU times of the DA are more stable than the CPU times of
the PSO. Especially, for the high demand levels, there is a big
diference in terms of run time. For high demand levels, the
PSO generates a large number of unnecessary patterns be-
cause the generated patterns seem to be similar. On the other
hand, DA seems to generate patterns with diferent con-
fgurations because DA has better exploration features.

7. Discussions

Zak [1] denotes that the CSP is a set-covering problem and
the SSP is a set-packing problem. Teir names, however, are
the names of the two fundamental technological processes:
cutting and skiving. A cutting process is the same as
a packing process. It is the same for the skiving and covering.
Zak also noted that the cutting (packing) process is well-
modeled by a knapsack, while the skiving (covering) process
is well-modeled by an unbounded knapsack problem (UKP).
Moreover, according to Zak, the CSP can be converted to
a set-covering problem, while the SSP can be converted to
a set-packing problem. Because they have similar input
matrices, they have a strong relationship with each other in
terms of modeling and solution approaches [1].

Such as the CSP, the SSP is also an NP-hard problem
[4, 20], reducible to the unbounded knapsack problem or

Table 2: Te computational complexity and results for N � 100, N′ � 400, G � 30.

Trial Variables Constraints g 􏽢vbest 􏽢σ2
􏽢v
best gapbest(xg) 􏽢σ2gapbest

CPU time
(sec.)

1 1510 2000 8 121562 241086 203 296115 53.6916
2 2888 3430 7-8 121536 229547 213 284571 61,0528
3 3895 4475 7 121835 241086 228 296011 74.6621

Table 3: Frequency of patterns in xSAA.

Product(k)/Pattern(j) x2 x12 x18 x19 x27 x40 x43 x44

1 26 — — — 22 — — 107
2 — 51 20 56 — 78 6 —

Table 4: Analysis of diferent step sizes.

Stepsize1 � 13σ1 10σ1 6.5σ1 3.25σ1 1.25σ1 0.6σ1
Stepsize2 � 16σ2 12σ2 7.5σ2 3, 75σ2 1.5σ2 0.75σ2
vSAA 121523 121559 121547 121597 121618 121593
􏽢σ2
􏽢v
SAA 229468 229547 231179 230194 230470 229401

gapSAA 175 191 168 176 175 191
􏽢σ2gapSAA 280227 285398 286006 284908 282488 283713
CPU time
(sec) 258 102 76 70 74 55
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Table 5: Performance analysis for the parameters of the DA.

α β c
Average objective function

value
Number of dragonfies: 20
α+ β+ c � 1
0.1 0.3 0.6 121498
0.1 0.5 0.4 121586
0.1 0.7 0.2 121639
0.3 0.1 0.6 121627
0.3 0.3 0.4 121542
0.3 0.5 0.2 121482
0.5 0.3 0.2 121493
0.7 0.2 0.1 121466
α+ β+ c< 1
0.3 0.03 0.07 121590
0.3 0.05 0.05 121667
0.3 0.07 0.03 121676
0.5 0.03 0.07 121542
0.5 0.05 0.05 121662
0.5 0.07 0.03 121542
0.7 0.03 0.07 121542
0.7 0.05 0.05 121667
0.7 0.07 0.03 121499
Number of dragonfies: 50
α+ β+ c � 1
0.1 0.1 0.8 121442
0.1 0.3 0.6 121625
0.1 0.5 0.4 121502
0.1 0.7 0.2 121472
0.3 0.1 0.6 121541
0.3 0.3 0.4 121688
0.3 0.5 0.2 121516
0.5 0.3 0.2 121620
0.7 0.2 0.1 121694
α+ β+ c< 1
0.3 0.03 0.07 121405
0.3 0.05 0.05 121536
0.3 0.07 0.03 121533
0.5 0.03 0.07 121782
0.5 0.05 0.05 121623
0.5 0.07 0.03 121669
0.7 0.03 0.07 121542
0.7 0.05 0.05 121666
0.7 0.07 0.03 121604
Number of dragonfies: 100
α+ β+ c � 1
0.1 0.1 0.8 121602
0.1 0.3 0.6 121615
0.1 0.5 0.4 121590
0.1 0.7 0.2 121597
0.3 0.1 0.6 121588
0.3 0.3 0.4 121609
0.3 0.5 0.2 121523
0.5 0.3 0.2 121548
0.7 0.2 0.1 121662
α+ β+ c< 1
0.3 0.03 0.07 121602
0.3 0.05 0.05 121594
0.3 0.07 0.03 121480
0.5 0.03 0.07 121718
0.5 0.05 0.05 121503
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dual bin packing problem which are known as the NP-hard
in the strong sense [23, 62]. Te overall problem can be
formulated as an integer linear programming problem
[1, 20].

Te dual bin packing can be described as a special case of
the unbounded multiple knapsack problem (UMKP),
a particular generalized assignment problem [63]. UMKP
describes each item by its weight and integer value.Tere are
m knapsacks, each with its carrying capacity. Te aim is to
pack a subset of the items so that all the items ft into the

knapsacks without violating the weight constraints, and the
total value of the packed items is as large as possible. In the
uniform UMKP, the capacities of the bins are the same. Te
problem is studied for the frst time and proved to be NP-
hard by Assmann et al. [23]. Furthermore, the DBBP, and
hence MKP, is strongly NP-hard even for m � 2 by [63].

Our model is the well-known multiconstrained integer
linear programming problem (the deterministic equivalent
of the stochastic integer program), which is the function of
the nonuniform DBPP or the UMKP. Te DBPP or the

Table 5: Continued.

α β c
Average objective function

value
0.5 0.07 0.03 121494
0.7 0.03 0.07 121534
0.7 0.05 0.05 121491
0.7 0.07 0.03 121528
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UMKP is the NP hard where optimal solution of the IP in
our study is greater and equal to output maximization of the
pure SSP (maximum output for the DBPP) (another aspect
x∗sp⟶ xrelaxation

ssp ). Te IP is also considered as the NP-hard
[62]. As a result, as the number of bins increases, in other
words, the number of patterns, which are the decision
variables of our IP model, increases, the complexity of our
problem increases rapidly.

On the other hand, for the complexity of stochastic
programming problems such as our problem, Shapiro [57]
states that the approximate solutions, with sufciently high
accuracy, of linear two-stage stochastic programs with fxed
recourse are NP-hard even if independent uniform distri-
butions govern the random problem data.

Another discussion about combinatorial optimization
problems is the solution methodology. While many methods
exist in the literature for decision-making under uncertainty,
the most comparable approach to the SP is robust optimi-
zation (RO).Tis study implements the SP due to its fexibility

to employ multistage models and its ability to handle sce-
narios with recourse actions that are not traditionally a part of
RO [64]. RO approaches are valuable in risk-sensitive and
risk-critical systems, such as power-grid maintenance opti-
mization to avoid blackouts [65] or the adoption of new
surgical treatments [66]. In addition, the RO becomes nec-
essary in the absence of information on the probability dis-
tributions. However, its conservative planning nature toward
the worst-case scenarios can lead to extreme risk-averse
decision-making in more risk-neutral systems [67]. None-
theless, numerous authors propose a trade-of between the SP
and the RO to balance the costs related to risks [68–70]. Tis
study implements the SP model due to the availability of the
probability distributions and the recourse actions. Moreover,
a risk-averse decision in the SSP leads to higher inventory
levels for unlikely extreme demand scenarios. Regardless of
these assumptions, the stochastic SSP is also a suitable can-
didate for the analysis of diferent risk-based approaches
depending on the criticality of the decisions.
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Figure 8: CPU time (sec) vs. growth rates for the demand means of two product types.

Table 6: Comparison of the PSO and DA for the total cost minimization.

Demand PSO DA

Product 1 Product 2 Total
cost

CPU
(sec)

Product 1
shortage

Product 2
shortage

Total
cost

CPU
(sec)

Product 1
shortage

Product 1
shortage

25 50 22050 8.34 0 0 21870 20.03 0 0
50 25 21555 7.55 0 0 21499 20.4 0 0
50 50 28870 9.51 0 0 28870 19.03 0 0
100 50 43350 12.55 0 0 42930 19.83 0 0
50 100 44100 25.06 0 0 43680 19.38 0 0
100 100 58220 25.95 0 0 57620 19.94 0 0
150 100 72340 55.39 0 0 72340 37.29 0 0
100 150 73510 109.83 0 0 72550 37.72 0 0
150 150 88170 60.96 0 0 87510 53.55 0 0
200 150 102770 533.53 0 0 101810 51.86 0 0
150 200 — — — — 102920 68.13 0 0
200 200 — — — — 116295 229.58 1 3
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8. Conclusions and Future Work

Skiving is essential in various industries, such as steel and
textiles. Despite being a long process in the industry, the SSP
is still an emerging feld in research. While several studies
have dealt with the deterministic version of the SSP, the
stochastic nature of the problem is still under investigation.

Tis study has developed an iterative two-phase algo-
rithm to solve the multiproduct stochastic SSP problem. We
have adapted the DA to the problem to obtain an efcient set
of proper patterns in the frst phase. Tis set provides
a feasible landscape for the second phase in which the SAA
solves the stochastic problem. Tis phase ofers the pattern
set with minimized trim loss, whereas the later phase
minimizes the total costs. While cost minimization is the
primary objective in this problem, trim loss is secondarily
minimized by the DA. Finally, the SAA fnds the solution to
the SMIP model through the pattern set obtained from the
frst phase and the best candidate solution, which gives the
minimum or improved expected total cost for the stochastic
problem. Te case of pattern-dependent set-up costs also
poses a consideration for future work. Additional research
directions for the stochastic SSP involve developing a ran-
dom search procedure for the upper bounds of the pro-
duction amounts, combining two phases of the algorithm
instead of expanding the search space by using the stepping
method.

Nomenclature

Indices

i: Item type index, i ∈ I ≔ 1, . . . , m{ }

j: Minimal pattern index, j ∈ J∗ ≔ 1, . . . , J{ }

k: Product type index, k ∈ K ≔ 1, . . . , K{ }

s: Scenario index, s ∈ S ≔ 1, . . . , S{ }

Parameters

υs: Te approved product rate (1-waste rate) in scenario s

bi: Te available amount of item type i

CO: Te set-up cost for the change of each pattern (set-up
costs are assumed to be the same)

CPr: Te fxed production cost for rolls with fxed length
(i.e., 3000meters)

CR
i : Te cost of the item type i

CB
k : Te cost of underproduction for product type k

CH
k : Te cost of overproduction for product type k

dsk: Te demand for product type k in scenario s

li: Te width of each item type i

Lk: Te threshold (lower bound) width of product type s

Mk: Te large number for each product such as
Mk≫ max dsk,∀s ∈ S, k ∈ K􏼈 􏼉

Ps: Te probability of scenario s

First-Stage Decision Variables

ri: Te amount of raw material i

xjk: Te repeat frequency of pattern j for product type k

yj: A binary variable indicating whether a pattern j is used

Second-Stage Decision Variables (Recourse Actions)

q+
sk: Te overproduction amount for product type k in

scenario s

q−
sk: Te underproduction amount for product type k in

scenario s

Dragonfy Algorithm Decision Variables (Parameters for the
Second Phase)

δjk: A binary variable indicating whether pattern j can be
used for product k or not

aij: Te number of item type i in pattern j.
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