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Abstract 

Objectives: Our study used a radiomics method to differentiate bone marrow signal abnormality 

(BMSA) between Charcot neuroarthropathy (CN) and osteomyelitis (OM). 

Materials and Method: The records of 166 patients with diabetic foot suspected CN or OM between 

January 2020 and March 2022 were retrospectively examined. A total of 41 patients with BMSA on 

MRI were included in this study. The diagnosis of OM was confirmed histologically in 24 of 41 patients. 

We clinically followed 17 patients as CN with laboratory tests. We also included 29 nondiabetic patients 

with traumatic (TR) BMSA on MRI as the third group. Contours of all BMSA on T1 and T2-weighted 

images in three patient groups were segmented semi-automatically on ManSeg (v.2.7d). The T1 and 

T2 features of three groups in radiomics were statistically evaluated. We applied multi-class 

classification (MCC) and binary-class classification (BCC) methodology to compare classification results. 

Results: For MCC, the accuracy of Multi-Layer Perceptron (MLP) was 76.92% and 84.38% for T1 and 

T2, respectively. According to BCC, for CN, OM and TR BMSA, the sensitivity of MLP is 74%, 89.23%, 

and 76.19% for T1, and 90.57%, 85.92%, 86.81% for T2, respectively. For CN, OM, and TR BMSA, the 

specificity of MLP is 89.16%, 87.57%, and 90.72% for T1 and 93.55%, 89.94%, and 90.48% for T2 images, 

respectively. 

Conclusion: In the diabetic foot, the radiomics method can differentiate the BMSA of CN and OM with 

high accuracy. 

Advances in knowledge: The radiomics method can differentiate the BMSA of CN and OM with high 

accuracy. 

 

 

Keywords: Charcot,  neuroarthropathy, osteomyelitis, diabetic foot, radiomics 
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Abstract 

Objectives: Our study used a radiomics method to differentiate bone marrow signal abnormality 

(BMSA) between Charcot neuroarthropathy (CN) and osteomyelitis (OM). 

Materials and Method: The records of 166 patients with diabetic foot suspected CN or OM between 

January 2020 and March 2022 were retrospectively examined. A total of 41 patients with BMSA on 

MRI were included in this study. The diagnosis of OM was confirmed histologically in 24 of 41 patients. 

We clinically followed 17 patients as CN with laboratory tests. We also included 29 nondiabetic patients 

with traumatic (TR) BMSA on MRI as the third group. Contours of all BMSA on T2 and T1 weighted 

images in three patient groups were segmented semi-automatically on ManSeg (v.2.7d). The T1 and 

T2 features of three groups in radiomics were statistically evaluated. We applied the multi-class 

classification (MCC) and binary-class classification (BCC) methodologies to compare results. 

Results: For MCC, the accuracy of Multi-Layer Perceptron (MLP) was 76.92% and 84.38% for T1 and 

T2, respectively. According to BCC, for CN, OM and TR BMSA, the sensitivity of MLP is 74%, 89.23%, 

and 76.19% for T1, and 90.57%, 85.92%, 86.81% for T2, respectively. For CN, OM, and TR BMSA, the 

specificity of MLP is 89.16%, 87.57%, and 90.72% for T1 and 93.55%, 89.94%, and 90.48% for T2 images, 

respectively. 

Conclusion: In diabetic foot, the radiomics method can differentiate the BMSA of CN and OM with high 

accuracy. 

Advances in knowledge: The radiomics method can differentiate the BMSA of CN and OM with high 

accuracy. 

 

Keywords: Charcot,  neuroarthropathy, osteomyelitis, diabetic foot, radiomics 

 

 

 

 

 

 

Revised Manuscript - Clean

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



                               

 

2 

 

 

INTRODUCTION 

Diabetes-related foot diseases are associated with high morbidity and substantial economic 

burdens worldwide. Diabetic patients have a 25% lifetime risk of developing foot ulcers, with 

the greatest risk for as many as 50% of the patients for subsequent osteomyelitis (OM) and 

amputation. 1 Five years mortality rate following below-knee amputation is 39% to 80% in 

patients with OM. 2,3 Early diagnosis and management of foot ulcers can avoid limb 

amputation.  

The diabetic foot may present with Charcot neuroarthropathy (CN), OM, and infectious 

complications of soft tissue. 

Diabetic polyneuropathy occurs in as many as 70% of patients and is the most common cause 

of foot osteoarthropathy.4 Repetitive traumas based on sensory neuropathy and hyperemia 

due to autonomic neuropathy lead to osteoporosis and joint deformity.5-7 

Dry skin due to autonomic neuropathy is sensitive to callus formation, and traumas break 

down the callus, contributing to skin ulceration.8 The skin ulcer creates a portal for soft tissue 

infection and lays the groundwork for OM. Treatment of infection in diabetic feet is often 

problematic due to insufficient immune systems and hypoperfusion. 

The clinical findings of CN may be difficult to distinguish from OM. In the acute phase of CN, 

the foot is characterized as erythematous, warm, and swollen. Hotfoot with no ulcer, acute 

phase of CN should primarily be considered with soft tissue infection or deep venous 

thrombus. 8, 9 Furthermore, CN and OM can co-exist as hotfoot with skin ulcers. However, the 

treatment strategies differ markedly; anti-biotherapy and surgery are the primary for OM, 

whereas protected weight-bearing is the mainstay for CN. 8  

Imaging plays a crucial role in distinguishing CN from OM and may guide early management 

on whether necessary to amputate. However, radiography has poor sensitivity and specificity 

in the differential of both entities; it is considered the first-line imaging investigation in 

diabetic hotfoot. After initial radiography, Magnetic Resonance Imaging (MRI) is the method 

of choice to diagnose OM, with a sensitivity of 90% and specificity of 79%. 11 Besides diagnosis, 

MRI, with its fine contrast resolution and anatomic detail, is well-suited to stage the extent of 

infection and the degree of tissue viability that is useful for guiding therapy .12 Hyperintensity 

of bone marrow on T2-weighted images has a high sensitivity for OM but relatively low 

specificity unless a hypointensity accompanies it on T1-weighted images on MRI . 13, 14 

Unfortunately, the marrow signal may sometimes be present similarly on both active CN and 

OM, 9, 15 and the location of the signal abnormality and soft tissue findings may be the only 

key features for differential diagnosis. OM occurs almost exclusively by the contiguous spread 

of infection to the bone from adjacent skin ulceration. 16 CN is not related to an overlying skin 
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ulcer and usually involves multiple midfoot bones and shows marrow abnormality in the 

periarticular and subchondral distribution.10 

Although morphologic MR imaging is the most useful diagnostic method for diabetic foot, 

there are no clear distinguishing radiologic features between CN and OM. New functional MR 

imaging techniques derived from diffusion-weighted imaging (DWI) and dynamic contrast 

enhancement (DCE) can be combined with morphologic sequences to improve diagnostic 

accuracy. 11 Unfortunately, these functional sequences are not routinely used for diabetic foot 

assessment. 

Radiomics is an advanced way to generate a high-dimensional feature set from radiologic 

images based on the distribution/relationship of image voxels and their statistical features. 17, 

18 Features received from distribution and relationship patterns of voxels that incorporate the 

region of interest are primarily part of the radiomics statistics. Different transformation 

matrices of the radiological images, such as wavelet and curvelet transformation, can also be 

used to source feature sets. 19 As a source (input data set) of machine learning methods, 

radiomics can be carried out on different clinical decision-making factors and evaluation of 

response to treatment or diagnostic classifications.20 

There has been no radiomics study on the differentiation of CN and OM in the diabetic foot. 

Few studies were published about the textural analysis reported in the literature on diabetic 

foot disease. 21,22 Our study aims to evaluate the potential of a machine learning algorithm via 

radiomics for differentiating the signal intensity of bone marrow between CN and OM. 

MATERIALS AND METHODS 

Patient 

The local ethics committee approved this retrospective study. Written consent was waived.  

The records of 166 patients with diabetic foot suspected CN or OM between January 2020 and 

March 2022 were retrospectively examined. A total of 41 diabetic patients who had bone 

marrow signal abnormality with hotfoot with/without skin ulcer were included in this study. 

They were scanned with the protocol of diabetic foot on the same Magnetic Resonance 

Imaging (MRI) machine. The diagnosis of OM was confirmed histologically in 24 of 41 patients. 

After excluding cellulitis and deep venous thrombosis,  we clinically followed 17 patients as 

CN with laboratory tests. The diagnosis of CN was confirmed by the regression of clinical 

findings after offloading the extremity without antibiotic treatment. The study also included 

29 nondiabetic patients with MRI with bone marrow signal abnormality after acute trauma 

(TR) as the third group compared with OM and CN groups. Eventually, the total number of 

patients was 70. 
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Imaging parameters  

All MRIs were performed on a Philips 3T imaging system with a dedicated foot, ankle, and 

knee coil. All studies included fast spin-echo [FSE] T1-weighted (time echo [TE]: 6.6–20, 

repetition time [TR]: 400–646, echo train length [ETL]: 2–5), fat-saturated FSE T2-weighted 

(TE: 70–90, TR: 2,600–5,600, ETL: 10–12), and short tau inversion recovery imaging (STIR) 

imaging (TE: 30–70, TR: 2,900–4,500, ETL: 9–11, TI: 150–230, angle: 140). SPAIR T1-weighted 

fat-saturated imaging following IV gadolinium administration was reviewed when available. 

Segmentation and Data Augmentation 

For MRI image analysis, two independent radiologists determined the consensus area of the 

signal abnormality and semi-automated slice segmentation.  

Firstly, the radiologists assessed the sagittal plane of T2 images. The readers selected 

contiguous images containing the signal abnormality of bone marrow near the skin ulcer and 

subarticular region. Secondly, the images corresponding to the area of abnormal signals 

detected in T2 were also recorded in sagittal images of T1. Both selected T2 and T1 images 

were saved as DICOM files and sent for segmentation. Post-contrast T1 images were not 

assessed. The DICOM images were uploaded to ManSeg (v.2.7d) software. Contours of all 

signal abnormality on T2 and T1 images were segmented semi-automatically on ManSeg 

(v.2.7d). In ManSeg, radiologists first delineated the ROI roughly, and then segmentation was 

finalized automatically with an active contour algorithm (Figure 1).  

Sometimes the small size of the dataset may cause overfitting in classification. To avoid 

overfitting, we used different samples from different levels of the segments of the ROI as a 

new case, which is one of the data augmentation techniques performed in a radiomics-based 

machine learning study. 23  Eventually, for T1-weighted images, augmentation resulted in 299 

labeled segmentation regions (64 CN, 137 OM, and 98 TR), and for T2-weighted images, 

augmentation resulted in 301 labeled segmentation regions (64 CN, 138 OM, and 99 TR) from 

70 cases. Figure 2 shows the different samples of one OM case for T1 (A, B, and C) and T2 (D, 

E, and F) images respectively.  

Feature Extraction 

Before feature extraction, the ± 3σ method is preferred as a normalization technique for T1 
and T2 weighted MRI images. 24 In this method, the intensity range of normalized images is 

converted between minnorm = µ − 3σ and maxnorm = µ + 3σ, where µ represents the mean and 

σ represents the standard deviation of the image intensities in the ROI. Radiomics features of 

the MRI datasets are extracted from original images, fine (kernel size of 3x3x1), medium 

(kernel size of 5x5x2), and coarse patterns (kernel size of 7x7x3) of Laplacian of Gaussian (LoG) 

filtered images and four different frequency sub-bands ((low-low, low-high, high-low and 

high-high) of wavelet decomposition of the images results. Due to the different morphological 

structures of the ROI, shape features of radiomics do not account for. The total number of 
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features is calculated at 736 per ROI. The description of the extracted features is given in Table 

1.  

 

Feature Selection 

We proposed a two-layer cascade feature selection method for determining the optimal 

feature set. Firstly, the degree of collinearity is selected as a feature selector. Pearson’s 
correlation coefficient (r) matrices of the features are calculated, and the r threshold is 

selected as 0.7. 25 The feature with the smallest p-value is selected as the first feature, and the 

features with low collinearity (-0.7≤r≤0.7) between the candidate feature and all previously 
selected features are included in the feature subset. As an output of the first layer of the 

feature selection method, the number of selected features is 47 and 48 for T1 and T2-

weighted images, respectively. Secondly, the Neighborhood Component Feature Selection 

(NCFS) Algorithm 26 is applied, and features with feature weights smaller than 0.001 are 

filtered from the feature set. Here 0.001 is selected empirically. Figure 3 shows the weighted 

values of the NCFS algorithm. The final feature subsets are 5 and 9 for T1 and T2-weighted 

images, respectively. 

Classification 

To compare CN, TR, and OM classification results, we applied multi-class classification (MCC) 

and binary-class classification (BCC) methodologies for classification. For T1 and T2 weighted 

MRI cases, Multi-Layer Perceptron (MLP) and The Logistic Regression (LR) are selected as 

classifiers, and for training and evaluation, ten-fold cross-validation is used. For the MLP 

classifier, three different MLP structures (have two hidden layers, and the number of neurons 

in each hidden layer is generated randomly between the size of the input and double the size 

of the input) are constructed, and learning rate and momentum coefficient values of each 

structure are randomly determined between 0.2-0.6 and 0.5-0.9 respectively. The details of 

the structures of MLP and parameter settings are given in Supplementary material 1. For LR, 

multinomial logistic regression is constructed for MCC, and binomial logistic regression is 

constructed for BCC. The committee structure is decided on the final decision based on 

majority voting.  

The average performance metrics across all 10 partitions are calculated for both T1 and T2 

weighted MRI cases separately. The performance of MCC for two different classifiers is 

evaluated by confusion matrix and accuracy. The performance of BCC is evaluated by 

sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, positive predictive 

value, negative predictive value, accuracy, and area under the receiver operating 

characteristics (AUC). Also, for BCC, receiver operating characteristic (ROC) curves are given in 

the Results. 
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RESULTS 

Patients Demographics and Tumor Characteristics 

In the OM group, 58.34% (n=14) of the patients were male and 41.66% (n=10) were female, 

and the mean age was 63.68±14.07 years. In the CN group, 52.95% (n=9) of the patients were 

male and 47.05% (n=8) were female, and the mean age was 61.13±11.56 years. In the TR 

group, 62.06% (n=18) of the patients were male and 37.94% (n=11) were female, and the 

mean age was 31.13±11.55 years. 

Dimension Reduction (Feature Selection) 

According to the degree of collinearity, the first layer of the feature selection algorithm 

reduced the number of features in the subset to 47 for T1-weighted and 48 for T2-weighted 

images among 736 features. Figure 4A and Figure 4B show the auto/cross-correlation matrix 

of the T1 and T2 weighted image features, respectively. As expected from the first layer of the 

feature selection method, there is no significant collinearity (|r|<0.7) among the features. The 

second layer of the feature selection algorithm has calculated the weights of the selected 

feature by using a diagonal adaptation of neighborhood component analysis (NCA). 27 

Eventually, the proposed feature selection algorithm selected features that had feature 

weights smaller than 0.001. Nine features are selected as the final feature subset for 

classification for T1 weighted images, five features, and T1 weighted images.  

 

When the final feature subset is investigated, for T1-weighted images, two features are 

derived from original images (feature1 and feature2). The rest are derived from LoG filters 

with different sizes of kernels (feature3, feature four, and feature5). For T2-weighted images, 

while two features are generated from the original image (feature1 and feature2), features 

three and four originated from the LoG filter with kernel size 7x7x3, and the rest of the 

features are generated from different frequency bands of the wavelet transform. The detailed 

description of the final feature subsets of T1 and T2 weighted images is given in Table 2, and 

their boxplot graphs are shown in Figure 5A for T1-weighted images and Figure 5B for T2-

weighted images.  

 

Classification 

When the two classifiers' accuracy is compared, MLP values are better than LR, with 76.92% 

accuracy for T1-weighted images and 84.38% for T2-weighted images. Detailed metrics are 

given in Table 3 and Table 4. Also, for BCC, MLP performance is better statistical values than 

LR. For CN, the sensitivity of MLP is 74% and 90.57% for T1 and T2 weighted images, 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



                               

 

7 

 

respectively. For MLP, sensitivity values of OM are calculated at 89.23% and 85.92%, and 

sensitivity values of TR are calculated at 76.19% and 86.81%, respectively, for T1 and T2 

weighted images. Specificity values of CN, OM, and TR are 89.16%, 87.57%, and 90.72% for 

T1-weighted cases, respectively. Specificity values of T2-weighted cases for MLP are obtained 

at 93.55%, 89.94%, and 90.48% for CN, OM, and TR, respectively. Detailed metrics are given 

in Table 5 for T1 and T2 weighted images. 

According to the results, T2-weighted images have better classification performance than T1-

weighted images for both MCC and BCC. 

 

 

DISCUSSION 

 

 

The diabetic foot may present with CN, OM, and soft-tissue complications, including cellulitis, 

myositis, ulceration, sinus tracts, and abscess. Morphologic MR imaging is the most useful 

diagnostic method for diabetic foot; however, there are no clear distinguishing radiologic 

features between CN and OM. 9, 15 Moreover, the treatment strategies differ markedly; 

antibiotics and surgical debridement are the primaries for infection, whereas protected 

weight-bearing is the mainstay for CN. 8 The location of the signal abnormality and soft tissue 

findings may be the only key features for differential diagnosis. OM occurs almost exclusively 

by the contiguous spread of infection to the bone from adjacent skin ulceration. 16 CN is not 

related to an overlying skin ulcer and usually involves multiple midfoot bones and shows 

marrow abnormality in the periarticular and subchondral distribution. 10 We evaluated the 

potential of a machine learning algorithm via radiomics for differentiating the signal intensity 

of bone marrow among CN, OM, and TR cases. T1 and T2 images of cases were taken into 

consideration.   

 

When final feature subsets of T1-weighted images are investigated, all features are derived 

from the original (feature one and feature 2) and the LoG filter of MRI images with different 

kernel sizes (feature 3, feature four, and feature 5). Also, two features (feature one and 

feature 4) are the same from different image types, derived as a contrast. This roughly may 

mean that spatial intensity changes have the main role in generating features for T1-weighted 

images. Because LoG filters are used to detect areas of rapid changes in images after the noise 

reduction and contrast is a measure of intensity changes between voxels and their 

neighborhood. Figure 5A shows that the contrast feature of the original image (feature 1) has 

the highest mean value while the contrast feature of the LoG filter (feature 4) has the smallest 

value, which can mean that the local intensity variation of ROI can be a selective feature before 

and after the noise reduction and sharpening procedures. 
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When the final feature subset of T2-weighted images is examined, it can be seen that features 

are generated from the original and both wavelet and LoG transformation of the MRI images. 

But the main source of the feature subset is wavelet transforms of the MRI, and skewness 

which measures the asymmetry of the distribution about the mean, is the dominant feature 

(feature 2, feature 3, and feature 5). The details and the visualized images of the wavelet 

transformations and LoG filter are given in Supplementary material 2. Also, the definition of 

each transformation matrix and the visualized images of each matrix are added to 

supplementary material 2. The difference in the asymmetry of the distribution about to the 

mean for the T1 and T2-weighted image is shown in Figure 1 and Figure 2 given in 

Supplementary File 2. 

Wavelet analysis is a decomposition method to divide information on an image into different 

components. Wavelet transform of a grayscale image is passed through high-pass and low-

pass filters, and the image is decomposed into high and low-frequency components at every 

level we get 4 sub-signals. When Table II (final feature subset) investigated, wavelet 

decomposition is not only represented key information but also transformation matrices such 

as GLCM (Gray Level Co-Occurrence Matrix), GLSZM (Gray Level Size Zone Matrix) and NGTDM 

(Neighboring Gray Tone Difference Matrix) have represented key information about to 

determine final feature final subset.  

For wavelet decomposition, it can be said that high and low-frequency components of the 

decomposition levels can highlight the importance of T2-weighted images. 

In this study firstly, each class is classified separately (MCC). Secondly, the classification 

performance of BCC is calculated with two different classifiers where one class is selected as 

positive while the remaining classes are negative.  

 

According to the MCC results, MLP has the highest classification ratio with an accuracy of 

76.92% and 84.38% for T1 and T2-weighted images, respectively. For BCC, MLP also performs 

better for T1-weighted (AUC values of CN, OM, and TR are 0.818, 0.896, 0.918, respectively) 

and T2-weighted images (AUC values of CN, OM, and TR are 0.93, 0.909, 0.898 respectively). 

 

When T1 and T2-weighted images are compared, T2-weighted images are better at imagining 

modalities for classifying the CN, OM, and TR. According to the ROC graphics of the MLP for 

T1-weighted MRI (Figure 6) classification performance of the TR and the OM, cases have nearly 

the same and better AUC values than in CN cases. For T2-weighted MRI, three cases' 

classification performances (Figure 7) are approximately the same AUC values. 

 

When Table 3 is investigated, the confusion chart of MLP shows that architecture 

distinguished each class of diseases better than LR for both T1 and T2-weighted images. For 

T1-weighted images, 16 of the CN cases misclassified as TR for MLP and the highest 

classification error occurred for CN cases for LR. For T2-weighted images, MLP classified CN 
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cases correctly according to T1-weighted cases but the LR algorithm again produced the 

highest classification error for CN cases. 19 CN cases were classified as OM and 16 cases of CN 

were classified as TR. 

 

According to the BCC and MCC, when the performance of radiomics features is investigated, 

while classification performance for each strategy has a reasonable accuracy (Table 4 and 

Table 5), the classification performance of BCC is better than the MCC. The selected radiomics 

features best distinguished the CN from other diseases on T2-weighted images with an 

accuracy of 93.02%.  

 

To our knowledge, this is the first study that classifies CN, OM, and TR by using radiomics 

features. Therefore, we could not compare our results with the literature. There are few 

studies on the diagnosis of non-tumoral pathological signals in the bone marrow with the 

radiomics technique.28 

 

Our study had some limitations. First, it is a retrospective study since diabetic foot OM is not 

very common in daily MRI practice. The second limitation is the low number of patients in our 

single-center study. Due to the low number of cases, we had to apply feature selection and 

classification steps to all data and this may lead to a bias. Therefore, it is expected that the 

performance of the classifier will be adversely affected by unseen new data. However, 

obtaining MRI images on the same machine and with the same examination protocol is one 

of the strengths of our study in terms of data homogeneity. 
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Figure 1 — Semi-automated segmentation procedure by using ManSeg(v.2.7b) Click here to access/download;Figure;Figure_1.jpg



                               

Figure 2 — Examples for augmentation techniques: different samples of one OM case
for T1 (A, B and C) and T2 (D, E and F) images respectively.

Click here to access/download;Figure;Figure_2.jpg



                               

Figure 3 — Feature weights of the NCFS algorithm Click here to access/download;Figure;Figure_3.jpg



                               Figure 4 — The auto/cross-correlation matrix of the features for T1
and T2-weighted Images

Click here to access/download;Figure;Figure_4.jpg



                               Figure 5 — Boxplot graphs of features for T1 and T2-weighted
images

Click here to access/download;Figure;Figure_5.jpg



                               

Figure 6 — ROC curves of OvA for T1-Weighted Images (MLP and LR) Click here to access/download;Figure;Figure_6.jpg



                               

Figure 7 — ROC curves of OvA for T2-Weighted Images (MLP and LR) Click here to access/download;Figure;Figure_7.jpg



                               

TABLE 1: Description of the extracted features 

    

NUMBER 

OF 

FEATURES 

TOTAL 

NUMBER 

OF 

FEATURES 

O
R

IG
IN

A
L 

IM
A

G
E

 1. FIRST ORDER STATISTICS  17 

92 

2. GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) FEATURES  24 

3. GRAY LEVEL SIZE ZONE MATRIX (GLSZM) FEATURES  16 

4. GRAY LEVEL RUN LENGTH MATRIX (GLRLM) FEATURES  16 

5. NEIGHBOURING GRAY TONE DIFFERENCE MATRIX 

(NGTDM) FEATURES  
5 

6. GRAY LEVEL DEPENDENCE MATRIX (GLDM) FEATURES  14 

Lo
G

 F
IL

T
E

R
  

(F
IN

E
, 

M
E

D
IU

M
, 

C
O

A
R

S
E

 P
A

T
T

E
R

N
S

) 1. FIRST ORDER STATISTICS  51 

276 

2. GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) FEATURES  72 

3. GRAY LEVEL SIZE ZONE MATRIX (GLSZM) FEATURES  48 

4. GRAY LEVEL RUN LENGTH MATRIX (GLRLM) FEATURES  48 

5. NEIGHBOURING GRAY TONE DIFFERENCE MATRIX 

(NGTDM) FEATURES  
15 

6. GRAY LEVEL DEPENDENCE MATRIX (GLDM) FEATURES  42 

W
A

V
E

LE
T

 

T
R

A
N

S
F

O
R

M
 

(L
L-

LH
-H

L-
H

H
) 

1. FIRST ORDER STATISTICS  68 

368 

2. GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) FEATURES  96 

3. GRAY LEVEL SIZE ZONE MATRIX (GLSZM) FEATURES  64 

4. GRAY LEVEL RUN LENGTH MATRIX (GLRLM) FEATURES  64 

5. NEIGHBOURING GRAY TONE DIFFERENCE MATRIX 

(NGTDM) FEATURES  
20 

6. GRAY LEVEL DEPENDENCE MATRIX (GLDM) FEATURES  56 

 

 

TABLE 1: Description of the extracted features



                               

TABLE 2: Description of the final feature subsets for T1 and T2-weighted images 

 

T1-WEIGHTED IMAGES FINAL FEATURE SUBSET 

CODE FEATURE NAME FEATURE CLASS IMAGE TYPE 

f1 Contrast GLCM ORIGINAL IMAGE 

f2 SDHGLE GLDM ORIGINAL IMAGE 

f3 90th percentile FIRST ORDER STATISTICS LoG (3x3x1) 

f4 Contrast GLCM LoG (5x5x2) 

f5 Sum Entropy GLCM LoG (7x7x3) 

T2-WEIGHTED IMAGES FINAL FEATURE SUBSET 

CODE FEATURE NAME FEATURE CLASS IMAGE TYPE 

f1 10th percentile FIRST ORDER STATISTICS ORIGINAL IMAGE 

f2 Skewness FIRST ORDER STATISTICS ORIGINAL IMAGE 

f3 Skewness FIRST ORDER STATISTICS LoG (7x7x3) 

f4 Correlation GLCM LoG (7x7x3) 

f5 Skewness FIRST ORDER STATISTICS WAVELET LL 

f6 Zone Entropy (ZE) GLSZM WAVELET LL 

f7 Inverse Variance GLCM WAVELET LH 

f8 Contrast NGTDM WAVELET HL 

f9 Sum Average GLCM WAVELET HH 

    

  

 

* f: feature, GLCM: Gray Level Co-Occurrence Matrix, SDHGLE: Small Dependence High Gray 

Level Emphasis, GLDM: Gray Level Dependence Matrix, GLSZM: Gray Level Size Zone Matrix, 

NGTDM:  Neighboring Gray Tone Difference Matrix, LL: low-low frequency band, HL: high-low 

frequency band, LH: low-high frequency band, 3x3x1/5x5x2/7x7x3: kernel size of the LoG filter 

 

TABLE 2: Description of the final feature subsets for T1 and T2-
weighted images



                               

TABLE 3: Confusion matrix of OvO for both T1 and T2 weighted images 

T1-WEIGHTED IMAGES 

OvO 
MLP 

OvO 
LR 

CN OM TR CN OM TR 

CN 39 9 16 CN 14 22 28 

OM 9 118 10 OM 5 104 28 

TR 6 6 86 TR 3 16 79 

T2-WEIGHTED IMAGES 

OvO 
MLP 

OvO 
LR 

CH OM TR CN OM TR 

CN 50 10 4 CN 29 19 16 

OM 5 124 9 OM 5 117 16 

TR 4 15 80 TR 3 13 83 

 

 

 

TABLE 3: Confusion matrix of OvO for both T1 and T2 weighted
images



                               

TABLE 4: Accuracy of OvO for both T1 and T2 weighted images 

T1-WEIGHTED IMAGES T1-WEIGHTED IMAGES 

OvO MLP LR OvO MLP LR 

Accuracy 76.92% 65.88% Accuracy 84.38% 76.08% 

 

TABLE 4: Accuracy of OvO for both T1 and T2 weighted images
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Table 5:   Performance metrics of T1/T2-weighted images (OvA) for both algorithms 

T1- WEIGHTED IMAGES 

  MLP LR 

Statistic 
CN OM TR CN OM TR 

Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI 

Sensitivity 74.00% 
59.66% - 

85.37% 
89.23% 

82.59% 

- 

93.99% 

76.19% 

66.89% 

- 

83.96% 

68.75% 

41.34% 

- 

88.98% 

77.88% 

69.10% 

- 

85.14% 

58.00% 

47.71% 

- 

67.80% 

Specificity 89.16% 
84.62% - 

92.73% 
87.57% 

81.63% 

- 

92.14% 

90.72% 

85.73% 

- 

94.41% 

81.27% 

76.23% 

- 

85.65% 

73.66% 

66.71% 

- 

79.83% 

79.90% 

73.65% 

- 

85.23% 

Positive 

Likelihood Ratio 
6,82 

4.61 - 

10.10 
7,18 

4.79 - 

10.76 
8,21 

5.22 - 

12.91 
3,67 

2.44 - 

5.53 
2,96 

2.28 - 

3.83 
2,89 

2.09 - 

3.99 

Negative 

Likelihood Ratio 
0.29 0.18 - 0.47 0.12 

0.07 - 

0.20 
0.26 

0.19 - 

0.37 
0.38 

0.19 - 

0.80 
0.30 

0.21 - 

0.43 
0.53 

0.41 - 

0.67 

Disease 

prevalence  
16.72% 

12.67% - 

21.44% 
43.48% 

37.78% 

- 

49.31% 
35.12% 

29.71% 

- 

40.82% 
5.35% 

3.09% - 

8.54% 
37.79% 

32.27% 

- 

43.55% 
33.44% 

28.12% 

- 

39.10% 

Positive 

Predictive Value  
57.81% 

48.07% - 

66.98% 
84.67% 

78.66% 

- 

89.22% 

81.63% 

73.86% 

- 

87.48% 

17.19% 

12.11% 

- 

23.82% 

64.23% 

58.08% 

- 

69.95% 

59.18% 

51.21% 

- 

66.71% 

Negative 

Predictive Value  
94.47% 

91.44% - 

96.47% 
91.36% 

86.53% 

- 

94.56% 

87.56% 

83.29% 

- 

90.86% 

97.87% 

95.69% 

- 

98.96% 

84.57% 

79.33% 

- 

88.67% 

79.10% 

74.85% 

- 

82.81% 

Accuracy  86.62% 
82.23% - 

90.27% 
88.29% 

84.10% 

- 

91.71% 

85.62% 

81.12% 

- 

89.39% 

80.60% 

75.66% 

- 

84.93% 

75.25% 

69.96% 

- 

80.04% 

72.58% 

67.14% 

- 

77.55% 

AUC 
0,818 

0.774 - 

0.862 0,896 

0.861 - 

0.931 0,918 

0.887 - 

0.949 0.707 

0.655 - 

0.759 0.804 

0.759 -

0.849 0.827 

0.784 - 

0.870 

             

T2- WEIGHTED IMAGES 

  MLP LR 

Statistic 
CN OM TR CN OM TR 

Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI 

Sensitivity 90.57% 
79.34% - 

96.87% 
85.92% 

79.09% 

- 

91.18% 

86.81% 

78.10% 

- 

93.00% 

78.57% 

59.05% 

- 

91.70% 

80.74% 

73.07% 

- 

87.02% 

77.53% 

65.72% 

- 

84.19% 

Specificity 93.55% 
89.73% - 

96.27% 
89.94% 

84.17% 

- 

94.14% 

90.48% 

85.67% 

- 

94.09% 

84.62% 

79.78% 

- 

88.68% 

82.53% 

75.88% 

- 

87.98% 

85.71% 

80.24% 

- 

90.15% 

Positive 

Likelihood Ratio 
14,4 

8.67 - 

22.73 
8,54 

5.34 - 

13.65 
9,12 

5.96 - 

13.94 
5,11 

3.64 - 

7.17 
4,62 

3.29 - 

6.50 
5,43 

3.74 - 

7.54 

Negative 

Likelihood Ratio 
0.10 0.04 - 0.23 0.16 

0.10 - 

0.24 
0.15 

0.09 - 

0.25 
0.25 

0.12 - 

0.52 
0.23 

0.16 - 

0.33 
0.26 

0.20 - 

0.41 

Disease 

prevalence  
17.61% 

13.48% - 

22.39% 
47.18% 

41.42% 

- 

52.99% 
30.23% 

25.10% 

- 

35.76% 
9.30% 

6.27% - 

13.16% 
44.85% 

39.14% 

- 

50.66% 
29.77% 

25.10% 

- 

35.76% 

Positive 

Predictive Value  
75.00% 

64.95% - 

82.93% 
88.41% 

82.66% 

- 

92.42% 

79.80% 

72.10% 

- 

85.79% 

34.37% 

27.18% 

- 

42.37% 

78.99% 

72.78% 

- 

84.09% 

69.70% 

61.82% 

- 

76.57% 

Negative 

Predictive Value  
97.89% 

95.27% - 

99.07% 
87.73% 

82.60% 

- 

91.50% 
94.06% 

90.32% 

- 

96.41% 
97.47% 

94.98% 

- 

98.74% 
84.05% 

78.74% 

- 

88.23% 
90.00% 

84.99% 

- 

92.20% 

Table 5:   Performance metrics of T1/T2-weighted images (OvA)
for both algorithms
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Accuracy  93.02% 
89.53% - 

95.63% 
88.04% 

83.83% 

- 

91.48% 
89.37% 

85.32% 

- 

92.61% 
84.05% 

79.42% 

- 

88.00% 
81.73% 

76.89% 

- 

85.93% 
83.28% 

77.97% 

- 

86.82% 

AUC 
0,93 

0.901-

0.959 0,909 

0.876- 

0.941 0,898 

0.864 - 

0.932 0,805 

0.760 - 

0.850 0,891 

0.856 - 

0.926 0,89 

0.855 - 

0.925 
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