
Vol.:(0123456789)

Journal of Imaging Informatics in Medicine 
https://doi.org/10.1007/s10278-024-01067-0

Differential Diagnosis of Diabetic Foot Osteomyelitis and Charcot 
Neuropathic Osteoarthropathy with Deep Learning Methods

Maide Cakir1   · Gökalp Tulum2 · Ferhat Cuce3 · Kerim Bora Yilmaz4 · Ayse Aralasmak5 · Muhammet İkbal Isik6 · 
Hüseyin Canbolat7

Received: 17 October 2023 / Revised: 26 February 2024 / Accepted: 28 February 2024 
© The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024

Abstract
Our study aims to evaluate the potential of a deep learning (DL) algorithm for differentiating the signal intensity of bone mar-
row between osteomyelitis (OM), Charcot neuropathic osteoarthropathy (CNO), and trauma (TR). The local ethics committee 
approved this retrospective study. From 148 patients, segmentation resulted in 679 labeled regions for T1-weighted images 
(comprising 151 CNO, 257 OM, and 271 TR) and 714 labeled regions for T2-weighted images (consisting of 160 CNO, 272 
OM, and 282 TR). We employed both multi-class classification (MCC) and binary-class classification (BCC) approaches to 
compare the classification outcomes of CNO, TR, and OM. The ResNet-50 and the EfficientNet-b0 accuracy values were 
computed at 96.2% and 97.1%, respectively, for T1-weighted images. Additionally, accuracy values for ResNet-50 and the 
EfficientNet-b0 were determined at 95.6% and 96.8%, respectively, for T2-weighted images. Also, according to BCC for 
CNO, OM, and TR, the sensitivity of ResNet-50 is 91.1%, 92.4%, and 96.6% and the sensitivity of EfficientNet-b0 is 93.2%, 
97.6%, and 98.1% for T1, respectively. For CNO, OM, and TR, the sensitivity of ResNet-50 is 94.9%, 83.6%, and 97.9% 
and the sensitivity of EfficientNet-b0 is 95.6%, 85.2%, and 98.6% for T2, respectively. The specificity values of ResNet-50 
for CNO, OM, and TR in T1-weighted images are 98.1%, 97.9%, and 94.7% and 98.6%, 97.5%, and 96.7% in T2-weighted 
images respectively. Similarly, for EfficientNet-b0, the specificity values are 98.9%, 98.7%, and 98.4% and 99.1%, 98.5%, 
and 98.7% for T1-weighted and T2-weighted images respectively. In the diabetic foot, deep learning methods serve as a 
non-invasive tool to differentiate CNO, OM, and TR with high accuracy.
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Introduction

Diabetic foot osteomyelitis (OM) and Charcot neuropathic 
osteoarthropathy (CNO) are two common complications  
that can occur in patients with diabetes mellitus. While 
both conditions can present with similar symptoms, such as 
redness, swelling, and pain in the foot, they have different 
underlying causes and require different treatment approaches 
[1]. Imaging modalities help differentiate between the  
two conditions and guide treatment decisions. Magnetic 
resonance imaging (MRI) is useful for evaluating soft tissue 
and bone marrow changes and can help differentiate between 
OM and CNO [2]. In CNO, MRI can show bone marrow 
edema, joint effusions, and ligamentous injuries. The marrow 
edema is typically seen in the subarticular region adjacent to  
the affected joint [3]. MRI can show soft tissue defects and 
inflammation in OM and signal abnormality in the adjacent 
bone marrow. The bone marrow signal abnormality (BMSA) 
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is almost seen near the soft tissue infection than in CNO 
[4]. Due to the neuropathy, patients may also stub their feet. 
Post-traumatic bone marrow edema is another condition  
that can be confused with OM and CNO. Similar signal 
abnormalities of bone marrow in visual assessment such as 
T1 iso-hypointensity and T2 hyperintensity are observed  
in OM, CNO, and TR. While MRI can be a helpful tool in 
differentiating between OM and CNO, there are no clear  
distinguishing MRI features between the two conditions using  
morphologic sequences alone. However, new functional MRI 
techniques, derived from diffusion-weighted imaging (DWI) 
and dynamic contrast enhancement (DCE), can be combined 
with morphologic sequences to improve diagnostic accuracy 
[5]. By combining morphologic MRI sequences with DWI 
and DCE-MRI, it may be possible to improve the diagnosis. 
Unfortunately, these advanced imaging techniques are not 
standardized or routinely used. However, in bridging this 
gap, deep learning models can serve as valuable inputs for 
decision-making processes and diagnostic classifications. 
Therefore, in this study, we presented a non-invasive tool for 
differentiating bone marrow signal abnormalities using deep 
learning methods.

In recent years, computer vision and machine learning 
algorithms have been used in the prognosis and diagnosis of 
diseases across a wide range of medical imaging modalities. 
These modalities include ultrasound, computer tomography 
(CT), MRI, and whole slide imaging (WSI) [6, 7]. Deep 
learning (DL)-based convolutional neural networks (CNN) 
have advanced to the forefront of medical segmentation 
and classification because of their ability to discover and 
interpret patterns [8]. DL techniques are used by research-
ers in the field of diabetic foot ulcer (DFU) assessment for 
detection and recognition [9, 10]. DFUQUTNET, DFUNET, 
ComparisonNet, EfficientNet, and ResNet are among the 
deep learning methods proposed for DFU identification, 
with most designed for visual images [11]. Diez et al. com-
pared the diagnostic accuracy of dynamic contrast–enhanced 
magnetic resonance imaging (DCE-MRI) and DWI with two 
regions of interest (ROI) sizes with 18-fluoro-deoxyglucose 
positron emission tomography/computed tomography (18-
FDG PET/CT) for distinguishing OM from CNO [12]. The 
research has constraints, such as its exclusive focus on a 
single institution, a small sample size, technical difficulties, 
exclusion of patients with renal failure—a common com-
plication of diabetes—dependence on ROI-based analysis, 
the influence of vascular diseases on the estimation of arte-
rial input function when calculating DCE-MRI parameters, 
and a failure to investigate additional MRI parameters. Yap 
et al. summarize the outcomes of DFUC2020 [9, 13] by 
evaluating the DL-based algorithms such as Faster R–CNN, 
its three variations, and an ensemble technique, Efficient-
Det, YOLOv3, YOLOv5, and a novel Cascade Attention 
Network [14]. Due to the limited number of datasets, some 

improvement methods remained at a minimum level. Goyal 
et  al. presented the refined EfficientDet algorithms for 
DFU detection in the DFUC dataset [15], which contains 
4500 images of ulcerated feet [16]. This study utilized the 
DFUC2020 dataset obtained from a particular hospital, 
potentially lacking a comprehensive representation of the 
diverse characteristics of DFUs across various populations 
or clinical environments. Additionally, the research concen-
trated on the technical facets of deep learning architecture 
for detecting DFUs, without delving into a thorough dis-
cussion of the clinical validation and real-world implemen-
tation of the proposed method. Munadi et al. developed a 
new framework for DFU classification combining thermal 
imaging, decision fusion, and deep neural networks [11]. 
The study is constrained by its reliance on a sole public data-
set, potentially lacking a precise representation of the entire 
population. Hernandez-Guedes et al. proposed a novel strat-
egy to evaluate the effectiveness of DL models in situations 
where labeled data were scarce [17]. As a case study, this 
methodology was examined by putting into practice many 
different experimental configurations to classify early-stage 
DFU samples taken from a plantar thermogram dataset. In 
this research, the scarcity of annotated data in deep learning 
models, especially within the healthcare domain, presents 
difficulties in evaluating performance metrics and detecting 
overfitting. This can potentially result in biased outcomes 
and make it challenging to gauge the representativeness of 
the model. Muralidhara et al. suggested a novel CNN for 
discriminating between five diabetes mellitus (DM) and 
non-DM severity grades from plantar thermal images and 
evaluated its performance to that of pre-trained networks 
like AlexNet [18]. The study is constrained by the difficulty 
of implementing standardized thermal imaging methods 
consistently across diverse acquisition systems. This obsta-
cle impedes the generalizability and practical application 
of decision support systems based on thermography. Ahsan 
et al. implemented DL frameworks, AlexNet, GoogLeNet, 
VGG16/19, ResNet50.101, SqueezeNet, MobileNet, and 
DenseNet for the classification of ischemia and infection 
using the benchmark dataset DFU2020 [19]. The study has 
limitations such as data imbalance and a limited amount of 
data. Alzubaidi et al. present a novel dataset of 754-ft images 
containing diabetic ulcer skin and healthy skin from sev-
eral individuals [20]. DFU QUTNet, a unique Deep-CNN, 
is proposed for automatically categorizing abnormal skin 
(DFU) and normal skin (healthy skin). The study suggests 
that DFUNet is presently the most advanced network for 
classifying DFUs. Nonetheless, it would be advantageous to 
conduct a more comprehensive comparison with alternative 
techniques and networks to present a more convincing dem-
onstration of its superiority. Thotad et al. implemented Effi-
cientNet for 844 diabetic foot ulcer images for early progno-
sis and diagnosis of DFUs [21]. The study is constrained by 
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its capability to only classify a foot as either diabetic (abnor-
mal) or healthy (normal), lacking the capacity to evaluate 
the severity of the condition or furnish detailed information 
about complications. Anaya-Isaza and Zequera-Diaz inves-
tigated different ML methods of using foot thermography to 
identify diabetic patients [22]. The primary objective of the 
study was to identify a suitable classification index, such as 
the Thermal Change Index (TCI). The study acknowledges 
the restricted collection of thermographic image data, poten-
tially impacting the applicability of the findings to a more 
extensive population.

In the literature, there are also relevant approaches for 
distinguishing bone marrow alterations in MRI. Chuah et al. 
[23] explored the potential use of MRI-based texture features 
for classifying individuals with and without bone marrow 
lesions. The study, involving 58 subjects, identified 29 with 
bone marrow lesions. Texture features were computed for 
the distal femur’s weight-bearing region, and a forward fea-
ture selection method identified a subset for classification. 
The results revealed that 98 out of 147 features exhibited sta-
tistically significant differences between normal and affected 
marrows. Subject classification achieved an AUC of 0.914, 
and slice classification obtained an AUC of 0.780. Limita-
tions were the exclusive focus on osteoarthritis-related bone 
marrow lesions and the high number of false positives and 
negatives. Li et al. [24] investigated the predictive capac-
ity of MRI-based three-dimensional texture analysis on 
ınfrapatellar fat pad (IPFP) abnormalities for incident radio-
graphic knee osteoarthritis in 690 at-risk participants. AUC 
values for the clinical score, ınfrapatellar fat pad texture 
score, and MRI Osteoarthritis Knee Score in the test cohort 
were 0.65, 0.84, and 0.85, respectively. Two main limita-
tions included concerns about result validity due to the lack 
of independence between the test and development cohorts 
and the inability to conduct histopathologic examinations, 
introducing uncertainty about the IPFP texture’s association 
with histopathologic characteristics. Kostopoulos et al. [25] 
aimed to identify textural changes in knee lesions (BME, 
INJ, OST) using 121 MRI knee examinations. Cases were 
grouped based on radiological findings. The study achieved 
an AUC of 0.93 ± 0.02 in the test set using combined radi-
omic descriptors. A limitation lies in relying on data division 
into groups based on radiological findings.

In the literature, the researchers mainly focused on the 
classification of the DFU and distinguishing bone marrow 
alterations. To the best of our knowledge, there is no study 
published in the English literature about the use of DL for 
the classification of OM and CNO in diabetic foot. We also 
included non-diabetic patients with traumatic BMSA in our 
study. Although the same abnormal signals can be seen in 
the bone marrow in all three clinics (OM, CNO, TR), there 
have been different histopathological background mecha-
nisms. We added the TR group to strengthen our diagnostic 

accuracy. Our study aims to evaluate the potential of a DL 
algorithm for differentiating the signal intensity of bone 
marrow among OM, CNO, and TR in diabetic and non-
diabetic patients.

Materials and Methods

Materials

Patient

The Health Sciences University Scientific Research Ethics 
Committee approved the study Ethics Committee approved 
the study (date: 16.05.2023, decision number: 2023-199).

The medical records of patients exhibiting suspected 
diabetic foot complications on foot MRI between Septem-
ber 2016 and December 2022 were reviewed, and the local 
ethics committee approved this retrospective study. Written 
consent was waived.

One hundred seventeen patients were scanned on the same 
MRI machine with the diabetic foot protocol. Patients with 
MRIs with poor diagnostic quality were excluded. Finally, 
eighty-seven diabetic patients who had BMSA on MRI with 
hotfoot with/without skin ulcers were included. Sixty-four 
diabetic patients with BMSA on MRI were diagnosed as 
OM histopathologically. The CNO group consisted of 23 
patients considered clinically and laboratory as Charcot and 
responded to related conservative treatments during their 
follow-up. Sixty-one non-diabetic patients with BMSA on 
foot MRI after acute TR were also included as the third group 
named TR. The total number of patients in all three groups 
(OM, CNO, and TR) was 148.

In the OM group, 68.8% (n = 44) of the patients were 
male, 31.2% (n = 20) were female, and the mean age was 
59 ± 16.58. In the CNO group, 60.9% (n = 14) of the patients 
were male, 39.1% (n = 9) were female, and the mean age 
was 53.22 ± 16.52 years. In the TR group, 67.2% (n = 41) of 
the patients were male, 32.8% (n = 20) were female, and the 
mean age was 43.22 ± 16.52 years.

Imaging Parameters

All MRIs were performed on a Philips 3 T imaging system 
with a dedicated foot and ankle coil. The studies consisted 
of fast spin-echo (FSE) T1-weighted imaging [time echo 
(TE) 6.6–25, repetition time (RT) 400–700, echo train 
length (ETL) 2–6], fat-saturated FSE T2-weighted imaging 
[TE 60–90, RT 2600–6600, ETL 9–13], and short tau inver-
sion recovery (STIR) imaging [TE 30–80, RT 2,900–4800, 
ETL 9–13, TI 150–250, angle 140]. SPAIR T1-weighted 
fat-saturated imaging following IV gadolinium administra-
tion was reviewed when available.
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2D Image Segmentation

The two independent musculoskeletal radiologists with more 
than 10 years of experience assessed the MRIs. In the visual 
evaluation of T1 and T2, iso-hypointensity of T1 and hyper-
intensity of T2 were seen in the bone marrow, which could 
not distinguish three different clinics (OM, CNO, and TR) 
from each other. For 2D image analysis, upon consensus, 
the radiologists segmented the area of the BMSA semi-
automatically using ManSeg (v.2.7 g) software [26]. First, 
the radiologists determined MRI slices containing the signal 
abnormality of bone marrow near the skin ulcer and subar-
ticular region for T1- and T2-weighted images. Then, the 
DICOM images were uploaded to ManSeg, and radiologists 
roughly delineated the contours of the BMSAs manually. 
Finally, segmentation was automatically done according to 

the radiologist’s drawings with an active contour algorithm. 
In Fig. 1, the process of delineating the OM ROI area for 
T1-weighted images is illustrated. Figures related to the ROI 
areas obtained through the ManSeg process for OM, CNO, 
and TR for both T1- and T2-weighted images are provided 
in the Supplementary File.

To prevent possible overfitting (caused by the limited 
dataset), we augmented sample space by selecting abnormal 
signals bigger than half of the largest cross-sectional area of 
the BMSA in one MRI image as a new sample case. Even-
tually, for T1-weighted images, 679 labeled regions (151 
CNO, 257 OM, and 271 TR) and, for T2-weighted images, 
714 labeled regions (160 CNO, 272 OM, and 282 TR) were 
segmented from 148 patients. Figures 2 and 3 show three 
different samples of OM (A–C), CNO (D–F), and TR (G–I) 
for T1- and T2-weighted images, respectively.

Fig. 1   The semi-automated segmentation process for identifying osteomyelitis (OM) region of interest (ROI) in T1-weighted image was con-
ducted using ManSeg (v.2.7 g)
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Methods

Data Preprocessing and Data Augmentation

The ROIs of the BMSA were extracted according to the 
radiologist’s semi-automated drawings on ManSeg (v.2.7 g), 
and the bounding box of the BMSA was extracted as input 
images. ROIs were normalized using the Z-score normali-
zation, and the normalized values of the voxels were trans-
formed into grayscale values. The size of each image was 
interpolated to 224 × 224. Conversion of grayscale images 
to RGB was done as R=G=B = grayscale value. For data 
augmentation, rotation (randomly between [− 150, 150]), 
reflection in the x- and y-axes, scaling (randomly between 
[0.9, 1.1]), and translation in the x- and y-axes (randomly 

between [− 10, 10] pixels) were performed. Finally, for 
T1-weighted images, 755 samples for CNO, 1285 samples 
for OM, and 1355 samples for TR and, for T2-weighted 
images, 800 samples for CNO, 1360 samples for OM, and 
1410 samples for TR were generated. In the Supplementary 
File, we incorporated augmentation samples for OM, CNO, 
and TR in both T1- and T2-weighted images, totaling three 
distinct variations.

Classification

We performed randomly five different train-test cross-
validation splits, but for each run, we employed the same 
threefold cross-validation for the algorithms, yielding 15 
performance metric values for each algorithm. The average 

Fig. 2   Three different samples of OM (A–C), CNO (D–F), and TR (G–I) for T1-weighted images respectively



	 Journal of Imaging Informatics in Medicine

validation accuracy was given as a classification accuracy 
for both T1- and T2-weighted MRI cases. The flowchart of 
the study is provided in Fig. 4. We also employed similar 
split approaches (conducting five distinct random train-test 
cross-validation splits while utilizing consistent threefold 
cross-validation in each iteration) for binary-class classifi-
cation (BCC), opting for a one-vs.-rest (OvR) strategy to 
compare the classification outcomes of CNO, TR, and OM. 
ResNet-50 [27] and EfficientNet-b0 [28] CNN models were 
used as a DL classifier, and training was evaluated using a 
batch size 32. Cross-entropy was selected as a loss function 
for both EfficientNet-b0 and ResNet-50. The learning rate 
and the number of epochs were selected as 0.0001 and 100, 
respectively. The Adam optimizer was utilized for training. 
Due to the small size of the input, the networks were trained 

by applying transfer learning, using EfficientNet-b0 and 
ResNet-50 pre-trained weights. The training process was 
performed in Matlab 2021a. For training, a GPU-enabled 
(NVIDIA GeForce GTX 1060, 6 GB) system (Intel(R) Core 
(TM) i7-8700 CPU @ 3.20 GHz 3.19 GHz, 16,0 GB RAM) 
was used. The.m files and classification results were pub-
licly available at [29].

Results

Table 1 shows that the ResNet-50 and the EfficientNet-b0  
mean accuracy values were computed at 96.17% and 
97.11%, respectively, for T1-weighted images. Additionally,  
accuracy values for ResNet-50 and EfficientNet-b0 were 

Fig. 3   Three different samples of OM (A–C), CNO (D–F), and TR (G–I) for T2-weighted images respectively
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determined at 95.57% and 96.83%, respectively, for 
T2-weighted images. The ResNet-50 model’s training for 
T1- and T2-weighted images concluded after 6 h 50 min  
35  s and 6  h 47  min 25  s over 100 epochs, while the  
training of the EfficientNet-b0 model for the same T1- and 
T2-weighted images was finalized in 13 h 17 min 19 s and 
13 h 29 min 36 s over 100 epochs, respectively. Training 
loss graphics per one-fold of cross-validation are provided 
in the Supplementary File. Upon examining the inference 
speeds, it was noted that ResNet-50 demonstrated faster  
processing, completing inference in approximately 5.56 s  
for T1-weighted images and 5.82 s for T2-weighted images. 
In contrast, EfficientNet-b0 exhibited slightly slower speeds, 
with inference times of around 7.93  s for T1-weighted 
images and 8.49  s for T2-weighted images. When the 
accuracy values of classifiers were examined for the same 
weighted images and different MRI sequences (T1 and 
T2), both ResNet-50 and EfficientNet-b0 demonstrated the 

capability to effectively distinguish multi-class classification 
problems while working with datasets of small to medium 
sizes. According to the results of the t-tests, the observed 
accuracy metrics were statistically significant (p < 0.05). The 
overall mean value of confusion matrices for 15 test results 
of ResNet-50 and the EfficientNet-b0 was given in Table 1.

The OvR method has been preferred for BCC. This ena-
bles the calculation of mean sensitivity, specificity, and F1 
scores for each class, providing clear insights into the per-
formance of individual classes. For BCC, ResNet-50 dem-
onstrates a sensitivity of 91.13% for CNO in T1-weighted 
images and 94.88% in T2-weighted images. ResNet-50 
achieves 92.37% and 83.60% sensitivity rates for OM and 
96.62% and 97.96% for TR in T1- and T2-weighted images, 
respectively. The specificity values for CNO, OM, and TR 
in T1-weighted cases are 98.07%, 97.96%, and 94.69%, 
respectively. Similarly, for T2-weighted cases, the specificity 
values for CNO, OM, and TR with ResNet-50 are 98.56%, 

Fig. 4   The flowchart of the 
proposed model



	 Journal of Imaging Informatics in Medicine

Ta
bl

e 
1  

T
he

 m
ea

n 
va

lu
e 

of
 c

on
fu

si
on

 m
at

ric
es

, (
ro

un
de

d 
to

 th
e 

ne
ar

es
t) 

an
d 

m
ea

n 
ac

cu
ra

cy
 o

f c
la

ss
ifi

er
s f

or
 T

1-
 a

nd
 T

2-
w

ei
gh

te
d 

im
ag

es

C
N

O
 C

ha
rc

ot
 n

eu
ro

pa
th

ic
 o

ste
oa

rth
ro

pa
th

y,
 O

M
 o

ste
om

ye
lit

is
, T

R 
tra

um
a

C
on

fu
sio

n 
M

at
ri

x 
fo

r 
R

es
N

et
-5

0

T1
-W

EI
G

H
TE

D
 IM

AG
ES

T2
-W

EI
G

H
TE

D
 IM

A
G

ES

Pr
ed

ic
te

d 
C

la
ss

Pr
ed

ic
te

d 
C

la
ss

C
N

O
O

M
TR

C
N

O
O

M
TR

Ta
rg

et
 C

la
ss

C
N

O
69

4
46

15
72

1
35

44
O

M
6

12
66

13
17

13
16

27
TR

15
35

13
05

9
26

13
75

A
cc

ur
ac

y 
(%

)
96

.1
7

95
.5

7
95

%
 C

I (
%

)
95

.5
2-

96
.8

2
94

.9
-9

6.
24

C
on

fu
sio

n 
M

at
ri

x 
fo

r 
Effi

ci
en

tN
et

-b
0

T1
-W

EI
G

H
TE

D
 IM

AG
ES

T2
-W

EI
G

H
TE

D
 IM

A
G

ES

Pr
ed

ic
te

d 
C

la
ss

Pr
ed

ic
te

d 
C

la
ss

C
N

O
O

M
TR

C
N

O
O

M
TR

Ta
rg

et
 C

la
ss

C
N

O
72

8
19

8
75

5
25

20
O

M
20

12
45

20
20

13
27

13
TR

16
15

13
24

9
26

13
75

A
cc

ur
ac

y 
(%

)
97

.1
1

96
.8

3
95

%
 C

I (
%

)
96

.5
5-

97
.6

7
96

.2
6-

97
.4



Journal of Imaging Informatics in Medicine	

Ta
bl

e 
2  

T
he

 p
er

fo
rm

an
ce

 m
et

ric
s f

or
 b

ot
h 

al
go

rit
hm

s i
n 

bi
na

ry
-c

la
ss

 c
la

ss
ifi

ca
tio

n 
(B

C
C

) u
si

ng
 a

 o
ne

-v
s.-

re
st 

(O
vR

) a
pp

ro
ac

h 
on

 T
1/

T2
-w

ei
gh

te
d 

im
ag

es

T1
-w

ei
gh

te
d 

im
ag

es

R
es

N
et

-5
0

Effi
ci

en
tN

et
-b

0

St
at

ist
ic

C
N

O
O

M
TR

C
N

O
O

M
TR

Va
lu

e
95

%
 C

I
Va

lu
e

95
%

 C
I

Va
lu

e
95

%
 C

I
Va

lu
e

95
%

 C
I

Va
lu

e
95

%
 C

I
Va

lu
e

95
%

 C
I

Se
ns

iti
vi

ty
91

.1
3%

90
.1

7–
92

.0
9

92
.3

7%
91

.4
8–

93
.2

6
96

.6
2%

96
.0

1–
97

.2
3

93
.1

7%
92

.3
2–

94
.0

2
97

.5
9%

97
.0

7–
98

.1
1

98
.1

4%
97

.6
9–

98
.5

9
Sp

ec
ifi

ci
ty

98
.0

7%
97

.6
1–

98
.5

3
97

.9
6%

97
.4

8–
98

.4
4

94
.6

9%
93

.9
4–

95
.4

4
98

.9
8%

98
.6

4–
99

.3
2

98
.6

7%
98

.2
8–

99
.0

6
98

.4
5%

98
.0

3–
98

.8
7

F1
-s

co
re

92
.1

0%
91

.1
9–

93
.0

1
94

.3
9%

93
.6

2–
95

.1
6

96
.5

5%
95

.9
4–

97
.1

6
95

.0
3%

94
.3

0–
95

.7
6

97
.7

0%
97

.2
0–

98
.2

0
98

.5
5%

98
.1

5–
98

.9
5

A
cc

ur
ac

y
96

.5
2%

95
.9

0–
97

.1
4

95
.8

5%
95

.1
8–

96
.5

2
95

.8
5%

95
.1

8–
96

.5
2

97
.8

2%
97

.3
3–

98
.3

1
98

.2
6%

97
.8

2–
98

.7
0

98
.2

6%
97

.8
2–

98
.7

0
A

U
C

​
98

.9
4%

98
.6

0–
99

.2
8

99
.2

0%
98

.9
0–

99
.5

0
99

.1
5%

98
.8

4–
99

.4
6

99
.2

7%
98

.9
8–

99
.5

6
99

.8
0%

99
.6

5–
99

.9
5

99
.8

3%
99

.6
9–

99
.9

7
Tr

ai
ni

ng
 ti

m
e

6 
h.

 3
0 

m
in

. 
42

 s
6 

h.
 1

2 
m

in
. 

06
 s

6 
h.

 2
3 

m
in

. 
47

 s
10

 h
. 5

4 
m

in
. 

39
 s

10
 h

. 4
1 

m
in

. 
59

 s
11

 h
. 5

2 
m

in
. 

48
 s

T2
-w

ei
gh

te
d 

im
ag

es

R
es

N
et

-5
0

Ef
fic

ie
nt

N
et

-b
0

St
at

ist
ic

C
N

O
O

M
TR

C
N

O
O

M
TR

Va
lu

e
95

%
 C

I
Va

lu
e

95
%

 C
I

Va
lu

e
95

%
 C

I
Va

lu
e

95
%

 C
I

Va
lu

e
95

%
 C

I
Va

lu
e

95
%

 C
I

Se
ns

iti
vi

ty
94

.8
8%

94
.1

4–
95

.6
2

83
.6

0%
82

.3
5–

84
.8

5
97

.9
6%

97
.4

8–
98

.4
4

95
.6

3%
94

.9
4–

96
.3

2
85

.2
2%

84
.0

3–
86

.4
1

98
.5

6%
98

.1
6–

98
.9

6
Sp

ec
ifi

ci
ty

98
.5

6%
98

.1
6–

98
.9

6
97

.4
7%

96
.9

4–
98

.0
0

96
.7

4%
96

.1
4–

97
.3

4
99

.0
6%

98
.7

4–
99

.3
8

98
.4

6%
98

.0
5–

98
.8

7
98

.7
2%

98
.3

4–
99

.1
0

F1
-s

co
re

94
.9

3%
94

.1
9–

95
.6

7
89

.0
7%

88
.0

2–
90

.1
2

97
.9

2%
97

.4
4–

98
.4

0
96

.1
7%

95
.5

2–
96

.8
2

90
.8

0%
89

.8
3–

91
.7

7
98

.8
6%

98
.5

09
9.

22
A

cc
ur

ac
y

97
.7

3%
97

.2
3–

98
.2

3
92

.1
8%

91
.2

8–
93

.0
8

97
.4

8%
96

.9
5–

98
.0

1
98

.2
9%

97
.8

5–
98

.7
3

93
.4

2%
92

.5
9–

94
.2

5
98

.6
3%

98
.2

4–
99

.0
2

A
U

C
​

99
.0

8%
98

.7
6–

99
.4

0
97

.0
8%

96
.5

1–
97

.6
5

99
.6

4%
99

.4
4–

99
.8

4
99

.3
2%

99
.0

4–
99

.6
0

97
.8

7%
97

.3
8–

98
.3

6
99

.9
1%

99
.8

1–
99

.9
6

Tr
ai

ni
ng

 ti
m

e
6 

h.
 2

2 
m

in
. 

04
 s

6 
h.

 2
1 

m
in

. 
29

 s
6 

h.
 2

1 
m

in
. 

21
 s

11
 h

. 1
5 

m
in

. 
01

 s
11

 h
. 4

9 
m

in
. 

04
 s

11
 h

. 1
9 

m
in

. 
55

 s



	 Journal of Imaging Informatics in Medicine

97.47%, and 96.74%, respectively. EfficientNet-b0 exhibits 
a sensitivity of 93.17% for CNO in T1-weighted images and 
95.63% in T2-weighted images. It also achieves sensitiv-
ity percentages of 97.59% and 85.22% for OM and 98.14% 
and 98.56% for TR in T1- and T2-weighted images, respec-
tively. Regarding specificity, CNO, OM, and TR values in 
T1-weighted cases are 98.98%, 98.67%, and 98.45%, respec-
tively. Similarly, for T2-weighted cases, EfficientNet-b0 
yields specificity of 99.06%, 98.46%, and 98.72% for CNO, 
OM, and TR, respectively. Performance metrics and train-
ing times are provided in Table 2 for T1- and T2-weighted 
images. The formulas for the metrics are provided in detail 
in the Supplementary File.

Discussion

According to the MCC classification results, both ResNet-50 
and EfficientNet-b0 exhibit high accuracies of 96.17%, 
95.57%, 97.11%, and 96.83% for T1- and T2-weighted 
images, respectively. When assessing the performance of 
deep learning–based algorithms using both BCC and MCC 
metrics (as shown in Table 1 and 2), it is evident that each 
strategy achieves remarkable accuracy in classification. This 
underscores the capability of both ResNet-50 and Efficient-
Net-b0 to effectively discern between CNO, OM, and TR 
classes utilizing T1- and T2-weighted MR images.

Approximately 40–60 million people worldwide with 
diabetes suffer from diabetic foot complications, 50% have 
a risk of getting OM, and the prevalence of CNO in people 
with diabetes with neuropathy has increased to up to 35% 
[30]. Diabetic foot complications can encompass a range 
of conditions, such as CNO, OM, and soft tissue compli-
cations, which may include cellulitis, myositis, ulceration, 
sinus tracts, and abscesses. Distinguishing between BMSAs 
associated with OM and CNO is essential, particularly in 
diabetic foot complications. OM is a severe bacterial infec-
tion of the bone, requiring prompt and targeted antibiotic 
treatment to prevent severe consequences, including the risk 
of limb amputation. CNO is a non-infectious condition char-
acterized by bone and joint deformities resulting from nerve 
damage, often associated with diabetes. Misdiagnosing OM 
as Charcot neuropathy or vice versa can lead to inappropri-
ate treatment choices, potentially exacerbating the condi-
tion. In diabetic individuals who are already at an increased 
risk of foot complications, accurate differentiation is crucial 
for guiding appropriate interventions. Mismanagement can 
result in delayed or inadequate treatment, contributing to 
prolonged healing times, increased morbidity, and elevated 
healthcare costs. Morphologic MR imaging is considered the 
most valuable diagnostic method for assessing diabetic foot 
complications [31]. Despite its usefulness, differentiating 
between Charcot neuroarthropathy and osteomyelitis using 

MR imaging can be challenging [3, 4]. Moreover, the treat-
ment strategies for diabetic foot complications differ signifi-
cantly, specifically infection and Charcot neuroarthropathy. 
The primary treatment approach involves a combination of 
antibiotics and surgical debridement for infections such as 
OM or soft tissue infections.

On the other hand, the mainstay of treatment for CNO 
is protected weight-bearing [1]. Also, the location of the 
signal abnormality and soft tissue findings on imaging can 
be crucial diagnostic features. Osteomyelitis typically occurs 
due to the contiguous spread of infection from an adjacent 
skin ulceration or soft tissue infection to the underlying bone 
[32]. CNO typically involves multiple midfoot bones, and 
the affected bones may show marrow abnormalities in the 
periarticular and subchondral areas [33].

In recent years, deep learning techniques have become 
increasingly important in the prognosis and diagnosis of dis-
eases across a wide range of medical imaging modalities. 
Although numerous studies were published in the field of 
DFU, to our knowledge, only one study focused on classify-
ing CNO, OM, and TR on MRI images utilizing radiomics 
features [26]. Cuce et al. first extracted radiomic features 
from the original, Laplacian of Gaussian (LoG) filtered, and 
the wavelet decomposed versions of T1- and T2-weighted 
MRI images and then applied a two-layer cascade feature 
selection method to determine the optimal feature set. The 
multi-layer perceptron (MLP) achieved the best classifica-
tion results, with an accuracy of 76.92% for T1-weighted 
images and 84.38% for T2-weighted images. Although the 
radiomic-based algorithm achieved a reasonable accuracy 
for T2-weighted images, the proposed DL-based classifi-
ers have better and similar performance for both T1- and 
T2-weighted images.

From Table 1, for T1-weighted images, 61 of the CNO 
cases were misclassified as OM and TR for ResNet-50, and 
27 of the CNO cases were misclassified as EfficientNet-b0. 
Also, ResNet-50 misclassified 19 of OM, and EfficientNet-
b0 misclassified 40 of OM as CNO and TR, respectively. 
For TR, the number of misclassified cases is 50 and 31 for 
ResNet-50 and EfficientNet-b0, respectively. In the case of 
T2-weighted images, ResNet-50 misclassified 79 samples 
of CNO as OM and TR, while EfficientNet-b0 misclassi-
fied 45 instances of CNO. Similarly, ResNet-50 misclas-
sified 44 samples of OM, and EfficientNet-b0 incorrectly 
labeled 33 as CNO and TR samples, respectively. For TR 
cases, there were 35 misclassifications for ResNet-50 and 
35 for EfficientNet-b0. The classification performance of 
the CNO, OM, and TR cases has approximately the same 
AUC values (from Table 2 T1-weighted images; minimum 
AUC was 98.94%, and maximum AUC was 99.83%). For 
T2-weighted MRI, the classification performance of the 
CNO and the TR cases has nearly the same and better AUC 
values than in OM cases (from Table 2 T2-weighted images; 
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compared to the CNO and TR AUC values, the OM AUC 
values were 2% lower).

As a limitation of our study, it is important to note that 
the dataset size was constrained, and we recognize the poten-
tial correlation among slices from the same patient. Despite 
this recognition, we adopted a practical approach based on 
the determination of experienced radiologists, treating each 
slice as an independent observation within the context of 
our analysis. The inherent correlation among slices, arising 
from the fact that samples from the same patient belong to 
the same type of bone marrow signal abnormality (belong-
ing to the same class), introduces a nuanced consideration. 
Secondly, the utilization of semi-automatic segmentation in 
our study may be a limitation. Because in the deep learning 
literature, DL-based object detection algorithms [34–36] are 
commonly employed, involving both localization and classi-
fication components to identify ROI and categorize objects. 
In this study, segmentation of BMSA regions could have 
been performed fully automatically using object detection 
algorithms instead of a semi-automatic method. However, 
false-positive regions and relatively lower segmentation 
accuracy may impact the overall success of the classifica-
tion process. Because classification in object detection algo-
rithms depends on segmentation, false localizations are the 
primary source of errors [37].

In this study, we assessed the capability of deep learning 
algorithms for differentiating the signal intensity of bone 
marrow among CNO, OM, and TR cases, considering T1 
and T2 images of the cases. Consequently, this study repre-
sented the first attempt to differentiate bone marrow signal 
abnormalities using deep learning methods. When the clas-
sification performance of the algorithms was considered, 
EfficientNet-b0 and ResNet-50 demonstrated that DL could 
serve as a non-invasive tool to differentiate CNO, OM, and 
TR with the phenomenon of transfer learning for T1- and 
T2-weighted MRI images.
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