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Abstract
This study introduces an innovative smart grid (SG) intrusion detection system, integrating Game Theory, swarm intelligence,
and deep learning (DL) to protect against complex cyber-attacks. This method balances training samples by employing
conditional DL using Game Theory and CGAN. The Aquila optimizer (AO) algorithm selects features, mapping them onto
the dataset and converting them into RGB color images for training a VGG19 neural network. AO optimizes meta-parameters,
enhancing VGG19 accuracy. Testing on the NSL-KDD dataset generates remarkable results: 99.82% accuracy, 99.69%
sensitivity, and 99.76% precision in detecting attacks. Notably, the CGAN technique significantly improves performance over
GAN. Importantly, this method surpasses various deep learning techniques such as VGG19, CNN-GRU, CNN-GRU-FL,
LSTM, and CNN in accuracy. Addressing the critical need for robust SG intrusion detection, our work merges Game Theory,
swarm intelligence, and deep learning, yielding superior security accuracy. The novelty of this study is implanted in the
integrated approach, distinguishing it from previous research and contributing to effective protection against cyber threats in
smart grids.
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1 Introduction

The Internet of things (IoT) is an intelligent communication
network that uses IoT networks and smart devices with vari-
ous sensors to communicate with other network components.
In this smart grid, data is created by sensors and sent to cloud
layer services and servers through an intelligent communica-
tion network [1]. The Internet of things has a multi-layered
architecture. The lowest level of the IoT is the perception
layer, which has many smart devices. The higher layer is the
network or fog layer, which performs some processing and
sends pre-processed data to the highest layer. The highest
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layer is the cloud layer, which has different servers for stor-
ing information and providing intelligent cloud services [2].
The IoT is used in various applications, including transporta-
tion networks [3], agriculture [4], smart cities [5], and power
grids [6].

A smart grid (SG) is one of the new application net-
works of the IoT. The SGs use information about the power
grid to evolve and increase grid efficiency. The smart grid
uses advanced sensors to improve energy systems’ per-
formance and reliability [7]. Power companies optimize
electric power production, circulation, transmission, and con-
trol using smart grids’ valuable information. A smart grid
increases the abilities of engineers and technicians to analyze
the electricity distribution networks and discover network
faults faster. The smart grid makes more accurate predic-
tions of electricity consumption in future. Using different
energy production sources and combining them to increase
productivity is one of the smart grid applications [8]. For an
efficient power distribution system, controls of power genera-
tion resources are optimized through intelligent technologies.
A smart grid intelligently integrates diverse technologies to
improve power distribution systems’ control and monitor-
ing mechanisms [9]. Intelligent energy distribution networks
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develop in countries with scarce natural resources, such as
oil, coal, or rare gases. Smart grids have different goals; the
primary purpose of a smart grid is to integrate as many pro-
duction facilities based on renewable energy sources [10].
According to studies, countries that want to advance must
have a smart electricity system that can adequately, intelli-
gently, and dynamically respond to infrastructure changes
and consumer demand [11]. Smart grids guarantee energy
security, economic growth, and environmental protection.
Smart grids take into account technological advancements
to boost dependability, availability, and efficiency, as well as
to improve the global economy and protect the environment
[12].

In smart grids, two-way data and power flows are based
on modern communication and digital technologies. The
purpose of the smart electricity network is to transform
the traditional electricity network into a new and advanced
network with the help of information and communication
technology. It was impossible to transfer extensive data
through traditional electricity networks because they used
high-voltage transmission cables [13]. Different electrical
components, such as transmission lines, transformers, sub-
stations, etc., are used in electricity distribution networks
[14–16]. Traditional power distribution networks do not have
large-scale energy storage facilities. Using renewable energy
is one of the goals of smart grids. They connect electrical
and digital data, unlike the traditional electricity transmis-
sion network. However, using digital technologies to send
various data types in smart grids has increased data security
challenges for power networks [17].

The infrastructure of smart grids depends on their com-
munication systems, and any disruption in these systems can
disrupt the entire smart grid function. The communication
systems used in a smart grid are highly vulnerable to cyber-
attacks. Cyber security in smart grids is a critical problem.
It refers to data confidentiality, availability, and integrity in
systems or smart devices connected to the Internet [18].

Cyber-attacks on the power system encompass diverse
forms, including Malware, Denial-of-Service (DoS), Phish-
ing, Man-in-the-Middle (MitM), and Physical attacks [19].
Power flow analysis and system configuration are crucial
for detecting potential cyber-attacks on electric power sys-
tems [20]. The article emphasizes identifying vulnerable
points in power systems against cyber-attacks and intro-
duces static indicators for effective addressing. The proposed
strategy involves integrating microgrids to enhance power
system flexibility, decentralization, and counter targeted
cyber-attacks, showcasing reduced outages and improved
stability with distributed generators [21].

One of the motivations behind providing an intrusion
detection system for smart grids is the increasing number of
attacks on these networks. Studies show that cyber-attacks

on smart grids have increased in recent years. Power inter-
ruptions and theft of subscribers’ personal information are
two effects of attacks on smart grids. In 2015, cyber-attacks
on the power grids in Ukraine led to significant power dis-
ruptions that lasted for several hours. Estimates show that a
cyber-attack on London’s electricity network caused a loss of
around 111 million pounds per day. The mentioned attacks
negatively affected the lives of 1.5 million people [22]. With
the digital development of smart grids, their level of vulner-
ability has increased, so it is necessary to provide intelligent
approaches to deal with these attacks. The significant dam-
age caused by attacks on the smart grids, widespread power
outages, and disruptions in economic activities make these
networks need smart intrusion detection systems.

An intrusion detection system (IDS) increases the secu-
rity of smart grids against attacks. Although the provided
intrusion detection systems effectively detect attacks on the
smart grids, it is vital to provide more advanced approaches.
Attacks on smart grids are evolving and improving, and
for this reason, there is a need for hybrid methods based
on artificial intelligence and group intelligence. Combin-
ing artificial intelligence and group intelligence in intrusion
detection systems reduces their false alarm rate while detect-
ing attacks. Deep learning processes, including long- and
short-term memory (LSTM) [23], convolutional neural net-
work (CNN) [24], and recurrent neural network (RNN) [25],
are effective in detecting Smart grid attacks. However, their
error rate can be significant. Swarm intelligence methods
increase their accuracy in detecting attacks to reduce the
error of deep learningmethods [26]. Thismanuscript presents
an intrusion detection system for smart grids by combining
swarm intelligence and deep learning. The proposed penetra-
tion detection system aims to reduce attack detection errors
and increase the security of smart grids. Reducing losses
caused by attacks and timely detection of attacks are other
goals of this research.

The research also presents a new and advanced approach
to detecting attacks in the smart grid. First, the proposed
method uses the deep learning method based on Game The-
ory to balance the dataset [27]. Balancing the dataset reduces
the intrusion detection error. Intrusion detection datasets have
many features, some of which are low values and cause the
learning accuracy to decrease. A new Aquila optimizer (AO)
algorithm-based method [28] has been presented that per-
forms feature selection. Another innovation is converting
selected features into RGB images for CNN neural network
learning and VGG19 architecture. In the proposed method,
the samples selected in the dataset are converted into color
images and chosen as the input of VGG19. The role of CNN
is to classify traffic into anomalous and normal categories.
Another innovation is optimizing CNN parameters with the
Aquila optimizer (AO) algorithm. The reasons behind using
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the Golden Eagle algorithm for feature selection and opti-
mization of CNN parameters to reduce intrusion detection
errors are as follows:

• The AO algorithm was presented in 2021 and has been
used in advanced research.

• The AO algorithm includes exploitation and exploration
searches.

• The AO algorithm is more accurate than some popular
algorithms (genetic algorithms (GA) and particle swarm
optimization (PSO)).

• The AO algorithm modeling is compelling and can search
complex spaces.

The main contributions of the authors are summarized as
follows:

• Balancing dataset sampleswith neighborhood information
and deep learning based on Game Theory.

• Presenting a binary version of the Aquila optimizer (AO)
algorithm for feature selection in attack detection.

• Coding the selected features of the dataset in the form of
RBG color images for CNN training.

• Using the advanced VGG19 architecture in combination
with theAquila optimizer (AO) algorithm to detect attacks.

• Reducing the attack detection error in the VGG19 archi-
tecture by optimizing the neural network parameters with
the Aquila optimizer (AO) algorithm.

• Applying the conditional version of GAN to balance the
dataset.

This research paper has five sections. Section I intro-
duces some key concepts. Section II explains the smart grids
and their components and reviews related studies on net-
work attacks and detection. Section III includes the proposed
intrusion detection system to protect smart grids. Section IV
presents the proposed approach to the implementation and
analysis of experiments. Section V offers the conclusion and
suggestions for future work.

2 Relevant works

Different energy sources provide electricity, including
nuclear power plants, thermal power plants, hydroelectric
power plants, gas power plants, solar cells, and wind tur-
bines. Businesses, factories, and homes consume electricity
and the energy produced in the power grid system. Figure 1
shows the elements involved in smart grids. An overview of
the players in the smart grid environment is shown in Fig. 1.
In Singapore, consumers are allowed to make and use energy
[29].

Fig. 1 Smart grid beneficiaries [29]

Producers can use solar panels and wind turbines to gen-
erate electrical energy, so in smart networks, energy flow
between the grid and suppliers is two-way. In a smart grid,
power is generated through both sources and consumers. The
excess electrical energy produced throughwind, thermal, and
solar resources is injected into themain grid. Themain advan-
tage of smart grids is the exchange of data in this network
in and to the power exchange. The data transmitted in smart
grids can include the information and data of users and sub-
scribers. Establishing a smart grid lets the producers know
the actual energy needs of the consumers [29, 30].

Knowing the amount of energy consumed allows a gener-
ator to generate enough power. Electrical equipment, smart
meters, and sensors installed in consumer centers are used
to acquire the data the producer needs [30]. Security issues
and network intrusions are two of the difficulties smart grids
face. Besides, attackers may enter the network to attack the
system. Attacks on the smart grids are classified into active
and passive attacks. In passive attacks, no damage is done
to network data. Attackers who use passive methods analyze
the data. Active attacks are more harmful than passive ones
because they manipulate and alter the data [31]. According
to a study [31], there are five primary objectives for cyber-
security in smart grids:

• User authentication and verification allow only authorized
users to enter the system.

• User authorization will enable users to access only autho-
rized information.

• Confidentiality of access to informationmakes the attacker
unable to manipulate user data.

• Data integrity.
• The availability of user data allows users to access their
data and information at any time.
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Fig. 2 Attack on smart grid infrastructure [32]

Figure 2 shows the cyber-attack on a smart grid. The
hacker tries to attack smart meters and manipulate their data.

Cyber-attacks on smart grids have happened several times
and caused widespread shutdowns or disruptions in the smart
grids. For instance, successful assaults on the Ukrainian
electrical infrastructure were launched in 2015 and 2016.
Attackers gained access to the operator consoles of the distant
distribution network during these incidents, causing exten-
sive blackouts. The blackout affected approximately 230,000
persons. This cyber-attack was the first successful one on a
smart grid [31].

Another example of an attack is the attack on Iran’s nuclear
facilities in 2010. In this attack, the Stuxnet caused many
centrifuges to burn in Iran’sNatanz uraniumenrichment plant
[33].

Another instance of an assault on the smart grid was
the 2003 blackout in the USA and Canada. A high-voltage
power line in Ohio struck some trees in 2003, resulting in
a widespread loss of electricity. As a result of this disaster,
estimated to have cost $6 billion and caused a total power
loss for 50 million people over two days, at least 11 people
died [34].

Another example is the 2011 blackout between Southern
California and Arizona. The Arizona–Southern California
blackout of September 8, 2011, disturbed the lives of 2.7
million people. On hot days, demand rises during peak hours,
and as a result of this rise in demand, a high-pressure line fails
because of a flaw that causes this issue [35].

Attacks on smart grids cause damage to the infrastructure,
and for this reason, the number of cyber-security papers has
increased in the last few years, as shown in Fig. 3.

An intrusion detection system is a valuable tool for iden-
tifying attacks on smart grids, which uses network traffic
analysis to identify anomalies in traffic. Attacks on smart

Fig. 3 Increasing number of smart grid cyber-security publications [36]

grids are detected utilizing blocklist approaches [37], heuris-
tic techniques [38], and machine learning techniques [7].
Blocklist approaches have a database of network attack pat-
terns, but they require a lot of memory and cannot detect
zero-day attacks. The heuristic methods based on evidence
and exploratory functions recognize theway of attacks.How-
ever, their error rate is significant. Deep learning andmachine
learning methods can detect zero-day attacks and are widely
used in designing intrusion detection systems. This section
reviews and analyzes relevant works on attack detection in
smart grids.

Previous research presents a deep learning approach with
a feature selection mechanism to detect cyber-intrusion in
smart grids. The researchers proposed a Bayesian approach
integrated with CNN in attack detection. In this research,
convolutional neural network layers are used for feature
selection. Their method implements real-time industrial con-
trol system datasets, and experiments showed that their
approach, based on long short-term memory (LSTM) and
recurrent neural networks (RNN), is entirely accurate in
detecting attacks.

A research publication describes the detection of assaults
on smart grids using a federated learning-basedmethodology.
They frame the challenge of anomaly detection as one of
the classifications. In order to distinguish between regular
and aberrant traffic, this study employs several centralized
machine learning and federated learning algorithms. To find
anomalies in three datasets, they used logistic regression,
1D CNN binary classifier, neural network classifier, RNN
classifier, LSTM binary classifier, GRU binary classifier, and
autoencoder binary classifier. The evaluations showed that
the 1D CNN method is more successful in detecting attacks
than other methods.

In a researchwork, the detection of attacks using the adver-
sarial generative network has been proposed. This research
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proposes the utilization of an XGBoost classifier alongside a
conditional generative adversarial network for the purpose
of attack detection. For stable model learning, WCGAN
and gradient penalty are utilized. The GAN’s function is
to balance the dataset. Wasserstein has a lower loss rate
for accurately generated data than other GAN techniques.
Theirmethodologywas tested using theUNSW-NB15,NSL-
KDD, and BoT-IoT intrusion detection datasets. Evaluations
revealed that their approach is more effective at identifying
assaults than random forest (RF), decision tree (DT), and sup-
port vector machine (SVM) methods. Their method is more
accurate than the DGM technique that uses GAN.

Another work presented a DDoS detection method using
the SDNs’ physical and cyber-systems. This method uses
information entropy and unsupervised anomaly detection
techniques to detect suspicious aspects and identify DDoS
attacks. Their approach has a 99.13% average accuracy rate
for identifying DDoS attacks. Their strategy lowers the false-
positive rate by 35%–59% compared to other comparable
efforts.

A research publication presented a blockchain platform to
reduce attacks on smart grids. Their experiments show that
even under high-impact attacks, their approach has a high
ability to detect attacks.

In another work, a solution was found using an improved
firefly algorithm and a convolutional neural network for iden-
tifying distributed denial-of-service attacks in an SDN-IoT
environment. The firefly method is used in this study to
enhance the ability of the convolutional neural network to
recognize DDoS attacks. Tests revealed that their process of
identifying attacks had a 98% accuracy rate.

Previous research presents a machine learning-based
intrusion detection approach for identifying attacks on smart
grids. Their proposed system detects attacks in real-time
using Arduino, Zigbee, and Raspberry Pi voltage and cur-
rent sensors. The mentioned research collected Zigbee data
through XCTU and delivered it as input to machine learn-
ing algorithms. The evaluations showed that the Gaussian
support vector machine is more accurate in detecting attacks
than other algorithms.

In a research paper, an intrusion detection method is pre-
sented based on the SMOTE and the extremely randomized
trees (ET) methods for smart grids’ cyber-security. The pro-
posedmethod uses a random tree classifier based on SMOTE
for intrusion detection.

The suggested framework offers a multi-class classifi-
cation of five types of network traffic, including regular,
root-to-local, user-to-root, and denial-of-service attacks. The
ET-SMOTE approach exhibits good accuracy in the NSL-
KDD dataset, according to experiments.

In another work, the researchers presented an intrusion
detection system for smart grids that uses fivemachine learn-
ing techniques. Tests showed that their intrusion detection

system has an accuracy of 98.4%. The attack detection delay
in their method is around 5 microseconds; the false-positive
rate is 0.28%, and the false-negative rate is 1.32%.

A research work presents a hybrid decision tree-based
solution for intrusion detection in smart grids. This approach
combines three decision trees to find intrusions. Using the
NSL-KDD dataset, experiments demonstrate that their strat-
egy is more effective at identifying assaults than support
vector machine, closest neighbor, and decision tree.

Another work presents an intrusion detection system for
SDN-based smart grids that detects unusual traffic. In their
method, local features are generalized by two-dimensional
data using a CNN neural network. Two distinct datasets
(UNSW_NB15 and KDDCup 99) are utilized to evalu-
ate approach. According to experimental findings, they are
more effective in detecting attacks than techniques like
LSTM. Later, another work introduced an optimized fea-
ture selection method using the particle swarm optimization
(PSO) algorithm to detect attacks. Their suggested strat-
egy is implemented and examined using the benchmark
datasets NSL-KDD and UNSW-NB15. They describe a deep
learning-based anomaly detection algorithm that uses auto-
matic encoders in each dataset. The results show that the F1
index in theNSL-KDDandUNSW-NB15 datasets is 92.09%
and 92.90%, respectively.

A signature-basedmachine learning architecture for smart
grid intrusion detection is presented in a study. This study
integrates machine learning and signature-based techniques
to detect attacks on smart energy grids. Their proposed sys-
tem is highly capable of detecting intrusions on smart grid
infrastructure.

In contrast to blocklisting and heuristic methods, machine
learning and deep learning methods can detect zero-day
attacks, as research on smart grids demonstrated. Signature-
based intrusion detection systems offer higher detection
rates, but adding rules and signatures to the list is time-
consuming and requires a lot of memory. Machine learning-
based intrusion detection systems canmitigate the drawbacks
of signature-based systems but have high false-positive (FP)
rates. Deep learning methods, such as CNN, have a higher
level of learning than machine learning methods. Still, they
have the following challenges to detect attacks accurately:

• CNN input should be in image format like RGB, but net-
work traffic is not in the form of images.

• An imbalance in the dataset reduces the accuracy of CNN
in detecting attacks.

• Failure to select the feature before learning by CNN
increases the error and time of intrusion detection.
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Fig. 4 Framework of the proposed intrusion detection system or CAV

2.1 SCADA (Supervisory control and data
acquisition)

SCADA systems generate comprehensive operational data
concerning smart grid components. These data include power
consumption, voltage, equipment status, and more. Integrat-
ing SCADAdata into the feature selection step required iden-
tifying suitable features to increase the influence detection
model’s training. This integration helps to source SCADA
information and enhances attack detection accuracy for smart
grid SCADA components.

3 Methodology

The proposed method uses deep learning based on Game
Theory and the VGG19 neural network to detect network
attacks. It also involves swarm intelligence to improve per-
formance and deep learning architecture. Figure 4 depicts
the architecture of the proposed intrusion detection system,
CGAN-AO-VGG19 (CAV), designed to detect smart grid
attacks. The following stages comprise the proposed method
to detect attacks on the smart grid:

• Balancing the dataset with CGAN.
• Feature selection with AO algorithm.
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Fig. 5 Conditional performance of the GAN method in producing arti-
ficial and fake samples [27]

• Coding attack traffic and regular traffic in the form of RGB
images.

• VGG19 neural network training with RGB images.
• Optimization of VGG19 neural network with AO algo-
rithm.

3.1 Dataset balancing with game theory

Balancing the dataset is one of the challenges for intrusion
detection systems in smart grids. Machine learning and deep
learning increase output error when the data is unbalanced.

If the training data has a balance in benign and malignant
traffic, the learning error in intrusion detection is reduced.
One of themethods to balance the dataset is using deep learn-
ing based on the GAN. The GAN is designed based on game
theory and has two parts: generator and discriminator. The
productive role produces artificial and fake samples, and the
discriminating role is classifying the samples into real and
fake categories. If the generator can deceive the discrimina-
tor, it wins. In this case, the discriminator is deceived and puts
fake and artificial samples in the category of actual examples.
A GAN deep learning network presented in a research work
[27] is of a conditional type, an improved version of GAN.
Figure 5 shows the structure of the dependent version of
GAN.

Let G be the generator; the input set is S � {s1, s2,…,
sn}. G uses z to generate artificial samples. The role of the
discriminator or D is to classify samples into fake and actual
classes. If a fake sample created by G is similar to normal
samples, D puts them in the standard class. G attempts to
deceive D and make artificial data so that D classifies it as
real. The objective function for the GAN method is shown
in Eq. (1) [27]

(1)

min
g

max
D

V (g, D) � Es−p(s)
[
logD (s)

]

+ Ez∼p(z)
[
log (1 − D (g (z)))

]

Here, p(s) is the dispersion of the actual data, g(z) gen-
erates noise samples, and z is the random value for creating
fake samples. In this equation, D(s) is the probability of a
sample placed in the class of real samples. In a study [27],
a new objective function for GAN is presented, and it is a
conditional version of GAN, and according to Eq. (2), it is
presented as follows:

(2)

min
g

max
D

V (g, D) � Es∼p(s)
[
logD (s|x)]

+ Ez∼p(z)
[
log (1 − D (g (z|x)))]

In this equation, x shows the details associated with each
class instance. The Lipschitz method and Wasserstein dis-
tance are used so that artificial and fake models are more
similar to standard samples to optimize CGAN. If the loss
rate reaches about 0.5 or less than this threshold, the objective
function of CGAN is formulated like Eq. (3) [27]:

V (g, D) � max
D

{
Es∼p(s)[D(s|x)] − Es∼p(g)

[D(s|x)] − ϕEs∼p(ω)[‖∇sD(s|x)‖ − 1]2
}

(3)

The CGANmethod balances the network traffic to gener-
ate artificial samples in the proposed method. CGAN checks
the samples in the minority class, and their number balances
the dataset.

3.2 Feature selection with AO algorithm

Learning on a balanced dataset is critical in reducing net-
work attack detection errors. Feature selection is another
fundamental factor in reducing the detection error of net-
work attacks by intrusion detection systems. The proposed
intrusion detection system uses an AO algorithm to select
features. The reasons behind using the AO algorithm in the
proposed intrusion detection system are as follows:

• It was presented in 2021 and is an advancedmeta-heuristic
algorithm.

• It has a simultaneous search, exploration, and exploitation
mechanism.

• It has robust modeling.
• It ismore accurate than standardmeta-heuristic algorithms
such as PSO and GA.

Each feature vector is amember of theAOalgorithm in the
proposed method. A random population of feature vectors,
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Fig. 6 Expanded exploration search [28]

according to Eq. (4), is created in the first step.

X �

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

x1, 1 · · · x1, j x1, Dim - 1 x1, Dim
x2, 1 · · · x2, j · · · x2, Dim
· · · · · · xi , j · · · · · ·
...

...
...

...
...

xN−1, 1 · · · xN−1, j · · · xN−1, Dim

xN , 1 · · · xN , j xN , Dim - 1 xN , Dim

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(4)

In this equation, Dim is the number of dimensions of each
feature vector and N is the number of feature vectors. Each
row of Eq. (4) matrix is a feature vector with zero and one
component. If a feature is selected, the component’s value
equals zero, and if it is not determined, its value is equal to
one. Like the j’s feature of the feature vector, the i’s feature
vector is displayed as X ij . Equation 5 evaluates each feature
vector.

F(Xi ) � μ1 × 1

n
E(Xi ) + μ1 × ‖Xi‖

41
(5)

In Eq. (5), ‖Xi‖ is the number of features selected by a
feature vector Xi andF(Xi ) is the value of the objective func-
tion in feature selection. Any feature vector that minimizes
the cost function is the optimal position in the AO algorithm.
AO algorithm has two types: expanded exploration and nar-
rowed exploration heuristic search.

Figures 6 and 7 show expanded exploration and narrowed
exploration. TheAOalgorithmhas twophases of exploitation
or local search (developed exploitationwith smooth descent),
according to Fig. 8, and narrowed exploitation, according to
Fig. 9.

Fig. 7 Narrowed exploration search [28]

Fig. 8 Expanded exploitation search [28]

Fig. 9 Narrowed exploitation search [28]
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Equation 6 uses the expanded exploratory search behavior
of vertical peaking and falling in the AO algorithm.

(6)

Xi (t + 1) � Xbest (t) ×
(
1 − t

T

)

+ (XM (t) − Xbest (t) ∗ rand )

In this equation, Xbest (t) is the bait position or the most
optimal solution, t is the current iteration counter, and T is
the maximum iteration of the algorithm. Xi (t + 1) is also the
position of a solution in the new iteration, and Xi (t) is the
previous position of the solution. On the other hand, XM (t)
is the average position of the solutions and it is calculated by
applying Eq. (7).

XM (t) � 1

N

N∑

i�1

Xi (t), ∀ j � 1, 2, . . . , Dim (7)

Equation (9) is used to perform narrowed exploration
search behavior of the type of rotational and spiral dive
toward the prey:

Xi (t + 1) � Xbest (t) × LF(D) + XR(t) + (y − x) × rand
(8)

In this equation, XR(t) is a random position in the algo-
rithm, D represents the dimensions of each problem solution,
and LF is a random function like Eq. (9):

LF(D) � s × u × σ

|v| 1β
(9)

In this equation, s and β are two parameters and numerical
constants and parameters u and v are two random numbers
between zero and one. Equation (10) is used to calculate σ :

σ �
�(1 + β) + sin

(
βπ
2

)

�
(
1+β
2

)
× β × 2

β−1
2

(10)

In these equations, x and y are used for rotational move-
ments and formulated as Eq. (11):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x � r × sin(θ)

y � r × cos(θ)

r � r3 + 0.00565 × D
θ � −ω × D1 + 3π

2

(11)

In this equation, r3 is the number of search cycles (1 to
20), ω equals 0.005, and D consists of integers from 1 to
dimension size (D). Equation (12) is used for direct move-
ment of solutionwithout spiral behavior or problem solutions

toward prey:

(12)

Xi (t + 1) � (Xbest (t) − XM (t)) × α − rand

+ ((UB − LB) × rand + LB) × δ

In this equation,α and δ are two parameters of local search
or productivity, and their number is between 0 and 0.1. Equa-
tion (13) is used for the behavior of movement toward the
prey with a spiral movement mechanism.

(13)

Xi (t + 1) � QF × Xbest (t) − (G1 × Xi (t) × rand)

− G2 × Levy (D) + rand × G1

In this equation, QF represents a quality function used
to balance search strategies, calculated using Eq. (14). G1
shows the different movements of the AO algorithm used to
track the prey during the escape, using Eq. (15). G2 shows
decreasing values from 2 to 0, representing the AO algo-
rithm’s flight slope to follow the prey during the escape,
formulated by Eq. (16).

QF(t) � t
2×rand−1
(1−T )2 (14)

G1 � 2 × rand − 1 (15)

G2 � 2 ×
(
1 − t

T

)
(16)

The most optimal solution is updated by executing the
AO algorithm steps. The most optimal solution is sent to
the output as the final solution. In the AO algorithm, if the
repetition counter is less than t ≤ 2T

3 , the search type is
exploratory; otherwise, the search type will be descriptive.

3.3 Traffic classification with VGG19

CNN is a deep learning method for image processing and
classification, and its input should be imaged. VGG19 uses
the incoming traffic coding into the images for network traffic
classification. The VGG19 approach provides higher accu-
racy, faster training speed, and fewer training samples per
time than ResNet and GoogleNet methods. Suppose K fea-
tures are selected from the dataset in the feature selection
step. A K matrix is created if K examples of the attack class
are isolated from the dataset. Each column of this matrix is
a selected feature. If the values of the matrix K normalize in
K examples are between 0 and 255, a gray image is created.
In the proposed method, three matrices, K*K, are consid-
ered for three channels, R, G, and B, to create a color image
of the dataset. The same is done for attack traffic and the
regular traffic classes. Normal traffic samples are standard
color images, and attack traffic samples are created as attack
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Fig. 10 a Traffic images, b attack images [39]

images. Attack images and normal images are used to train
CNN. A CNN is trained by converting traffic samples into
color images of attacks and normal traffic (Fig. 10).

In the proposed method, images of attacks and normal
traffic are used as inputs to the VGG19 neural network in
the CNN architecture. Figure 11 shows the architecture of
VGG19 and classifies attack and normal images.

The input of the VGG19 neural network shows images of
attack traffic and normal traffic, and the output of VGG19
architecture has two classes of images: attack type and nor-
mal.

3.4 TheVGG19 optimization

The CNN and architectures like VGG19 have different
meta-parameters. The precise adjustment of the learning
parameters in the VGG19 neural network reduces classifi-
cation errors. The number of epochs, frozen layers, early
stop patience batch size, dropout ratio, and learning rate are
the meta-parameters that effectively reduce CNN neural net-
work classification errors. The proposed method uses the AO
algorithm to optimize the CNN’s hyperparameters. In this
case, each member of the AO algorithm is a deep learning
parameter, and the objective function shows the normal traf-
fic classification error from the attack.

4 Experimental results

This section implements and evaluates the proposed intru-
sion detection system for detecting attacks on smart grids.
Python, Keras, and Tensorflow libraries have been used for
implementation. The population size of the AO algorithm is
15, and the maximum number of AO iterations is 50. The
number of tests equals 25, and the training and test data sizes
are considered 70% and 15%. 15% of samples are validation
traffic. The value ofα and δ in theAOalgorithm is between [0,
0.1]. In this case, r3 in the AO algorithm is a value between
1 and 20, and D is an integer between 1 and dimension size
(D). Moreover, ω is equivalent to 0.005, and u and v are two
random numbers between 0 and 1 in the AO algorithm.

4.1 Dataset

The NSL-KDD dataset implements and evaluates the pro-
posed intrusion detection system. The KDD-NSL dataset has
42 features, 41 of which are input features and 42 are output
features. The NSL-KDD dataset has 23 types of traffic, 22 of
which are attacks and just one is normal traffic. In the NSL-
KDD dataset, the number of normal samples is more than the
number of attack samples, the dataset is unbalanced, and the
CGAN method is applied to balance the attack samples.

4.2 Evaluationmetrics

Evaluation indicators such as precision, sensitivity, and
precision to evaluate the proposed method are formulated
according to Eqs. (17), (18), and (19).

Accuracy � ACC � TP + TN

TP + TN + FP + FN
(17)

Sensitivity � Recall � DR � TP

TP + FN
(18)

Precision � P � TP

TP + FP
(19)

4.3 Intrusion detection system (IDS)

Confusion matrices are crucial tools to evaluate the effec-
tiveness of an intrusion detection system (IDS), revealing
the alignment between predicted accuracy and actual out-
comes. These matrices provide transparency and essential
metrics such as accuracy, precision, recall, F1-score, and
specificity. This deepens comprehension of system perfor-
mance and strengthens its practical reliability.

TP, TN, FP, and FN parameters are defined as follows to
calculate accuracy, sensitivity, and precision [40, 41]:

• True positive (TP): The traffic is attack type and classified
in the attack class.

• False negative (FN): The traffic is attack-type but classified
in the normal class.

• False positive (FP): The traffic is normal but classified in
the attack class.

• True negative (TN): The traffic is normal and classified in
the normal class.

The confusion matrix formula is provided as follows
[42–44]:

• Accuracy: (TP+TN)
(TP+TN+FP+FN)

• Precision: (TP)
(TP+FP)

• Recall (sensitivity or true-positive rate): (TP)
(TP+FP)
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Fig. 11 VGG19 neural network
architecture

Table 1 Index of accuracy, sensitivity, and precision in four scenarios,
balancing dataset by CGAN method

Scenarios Accuracy Sensitivity Precision

S1 97.21 97.13 97.16

S2 98.82 98.25 98.64

S3 98.35 98.27 98.33

S4 99.82 99.69 99.76

• Specificity (true-negative rate): (TN)
(TN+FP)

• F1-score: (2∗(Precision∗Recall))
(Precision+Recall)• Parametric comparisons involve adjusting system param-

eters and evaluating metrics to find the optimal configu-
ration that improves system performance for the detailed
task.

4.4 Evaluation results

Several scenarios have been considered for evaluating the
proposed method. The proposed intrusion detection system
performs without VGG optimization in the first step. VGG
is combined with the AO feature selection algorithm in the
second scenario. In the third scenario,VGG is optimizedwith
theAOoptimization algorithm. In the fourth scenario, theAO
algorithm selects features and optimizes VGG parameters.
The experiment scenarios are shownwith S1, S2, S3, and S4,
respectively. Table 1 shows the proposed method’s accuracy,
sensitivity, and precision index in two VGG scenarios with
and without the AO algorithm.

Figure 12 visually shows a bar chart’s accuracy, sensitiv-
ity, and precision index. Experiments show that in the first
scenario, if the AO optimization algorithm is not used to
optimize and select the VGG19 feature, the intrusion detec-
tion system’s accuracy, sensitivity, and precision are 97.21%,
97.13%, and 97.16%, respectively. In the second scenario, if
the AO algorithm is used to optimize VGG19 for feature
selection, the proposed method’s accuracy, sensitivity, and
precision are 98.82%, 98.25%, and 98.64%, respectively. In
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Fig. 12 Evaluation of the proposed intrusion detection system in four
scenarios with CGAN

the third scenario, the AO algorithm is used to optimize the
parameters of VGG19, and its accuracy, sensitivity, and pre-
cision are 98.35%, 98.27%, and 98.33%, respectively. In the
fourth scenario, the proposed method’s accuracy, sensitivity,
and precision are 99.82%, 99.69%, and 99.76%, respectively.
The evaluations show that the proposed IDS effectiveness
maximizes if the AO algorithm uses feature selection and
parameter optimization.

When the AO algorithm selects the features, the intrusion
detection system’s accuracy ismore important thanwhen uti-
lized to optimize theAOparameters. In otherwords, using the
AO algorithm in the feature selection phase has more consid-
erable impact on improving the accuracy of attack detection
than using the AO algorithm to optimize the VGG19 param-
eters.

If the GAN balancing method is used instead of CGAN in
the experiments, the results of the scenarioswill be according
to Table 2. Figure 13 compares the accuracy, sensitivity, and
precision index in four scenarios when balanced using the
GAN method.

Experiments show that if GAN is used instead of CGAN
in balancing the dataset, the proposed method’s accuracy,
sensitivity, and precision in detecting attacks will increase. If
CGAN is used to balance the dataset in the proposedmethod,
the accuracy, sensitivity, and precision are 99.82%, 99.69%,
and 99.76%, respectively. If the GAN method balances the
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Table 2 Index of accuracy, sensitivity, and precision in four scenarios
when the dataset was balanced using the GAN method

Scenarios Accuracy Sensitivity Precision

S1 97.09 96.92 96.98

S2 98.51 98.02 98.22

S3 98.14 97.82 97.94

S4 98.62 98.23 98.25
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Fig. 13 Evaluation of the proposed intrusion detection system in four
scenarios using GAN balancing
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Fig. 14 Comparison of the proposed balancing intrusion detection sys-
tem using GAN and CGAN

dataset, the proposed method has an accuracy, sensitivity,
and precision of 99.62%, 99.23%, and 99.12%, respectively.
Figure 14 compares the proposed method’s accuracy, sensi-
tivity, and precision with two GAN and CGAN methods.

When the CGAN method is used to balance the dataset,
the accuracy, sensitivity, and precision improved by 1.2%,
1.51%, and 1.46%, respectively, compared to the GAN
method, the proposed attack detectionmethodwas compared
to previous research findings, which used machine learning
methods, such asHDT,DT,KNN, and SVM, to detect attacks
on smart grids. Figure 15 shows the proposedmethod’s accu-
racy, sensitivity, and precision compared tomachine learning
methods.
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Fig. 15 Comparison of the proposed intrusion detection system and
machine learning methods

Table 3 Comparison of accuracy, sensitivity, and precision index with
deep and machine learning methods

Models P (%) DR (%) ACC (%)

SVM 97.76 97.8 97.81

LR 97.94 97.95 97.95

KNN 98.76 98.79 98.79

MultinomialNB 91.09 88.65 88.65

DNN-3 98.48 98.49 98.5

GRU + MLP 97.98 98.04 98.05

DNN-16 98.86 98.91 98.92

Transformer-IDM 99.49 99.49 99.48

Proposed method 99.82 99.69 99.76

Comparisons show that the proposed method has more
accuracy, sensitivity, and precision in detecting attacks than
HDT, DT, KNN, and SVM methods. Among the machine
learning methods (in terms of detecting network attacks), the
support vector machinemethod has the worst performance in
terms of accuracy index. The proposed method is compared
with machine learning and deep learning findings of previ-
ous research [45]. Table 3 shows the comparison in terms of
accuracy, sensitivity, and precision.

In [45], federated hierarchical learning is used to
detect attacks on smart grids. Table 2 compares the pro-
posed method with SVM, LR, KNN, multinomialNB, and
deep learning methods, such as GRU + MLP, DNN-3,
Transformer-IDM, and DNN-16. According to the com-
parisons, the proposed method is more accurate than the
federal learning method in detecting attacks on smart grids.
In Fig. 16, the proposed method in attack detection is com-
pared with federal deep learning methods such as Fed-GRU
+MLP, Fed-DNN-3, Fed-Transformer-IDM, and Fed-DNN-
16 on the accuracy index.
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According to tests and comparisons, the accuracy of
detecting attacks by federated deep learning, such as Fed-
GRU + MLP, Fed-DNN-16, Fed-Transformer-IDM, and
Fed-DNN-3, is 97.98%, 98.76%, 99.49%, and 98.5%. The
accuracy of the proposed method in detecting attacks is
99.82%, so it is more accurate than deep learning methods
in detecting intrusion into the smart grids. In a study [46],
deep learning methods are used to detect attacks on the smart
grids, and the results of the proposed method are compared
to the results of this study (Fig. 17).

Figure 17 presents the proposed method on the accu-
racy index with GA-ELM, ELM, CNN, ICNN, and AE-
LightGBM methods in detecting attacks on the smart grid.
Comparisons show that the accuracy of GA-ELM, ELM,
CNN, ICNN, and AE-LightGBM methods in detecting
attacks is 98.9%, 97.58%, 97.07%, 95.36%, and 99.70%,
respectively. The results of the comparisons showed that the
accuracy of thesemethods is lower than the proposedmethod
in detecting attacks. The analysis of the detection time of the
proposed method with different methods is shown in Fig. 18.
For comparison, the results obtained in the research [47] are
used, and the detection time of penetration is considered in
seconds.
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Fig. 18 Comparison of attack detection time in seconds

The analysis of attack detection time shows that the deci-
sion tree method has the lowest attack detection time among
the compared methods. Its accuracy is much lower than the
proposedmethod.Theproposedmethodonly hasmore detec-
tion time than the decision tree method and the Bayesian
network. The proposed method has less time in intrusion
detection than methods like logistic regression, random for-
est, CNN-GRU, and CNN-GRU-FL.

5 Limitations and future work

Itwould be beneficial to offer readers a comprehensive under-
standing of potential limitations and areas for further increase
in your research. The current work focuses on the crucial
need for an efficient intrusion detection system for smart
grids (SGs) due to their vulnerability to various intrusions
and attacks. Despite the success of the proposed method
in detecting attacks, one notable disadvantage during the
training phase is time limitations. Furthermore, while swarm
smart and deep learning are significant strengths, the sug-
gest model may require adaptation for various attacks and
networks, like 5G. In future efforts, exploring the combi-
nation of CNN and LSTM architectures and expanding the
intrusion detection system’s utilization to 5G networks could
prove valuable for advancing this field.

6 Conclusion

Smart grids (SGs) are essential in data and energy transmis-
sion today. However, this network is susceptible to all kinds
of intrusions and attacks. Attacks on the SG network are very
harmful and can cause disaster, so it is necessary to provide
an efficient intrusion detection system to deal with them.
A significant challenge in delivering an intrusion detection
system for the SG network is that traffic imbalance reduces
the ability to detect attacks with deep learning methods. An
efficient method for pattern recognition is CNN. It is used
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for image processing and analysis, but the network traffic
does not have an image-type nature. This manuscript uses
the network traffic balance by a deep learning method based
on conditional Game Theory called CGAN. In the second
step, a binary version of the AO algorithm is presented to
select the main features of the dataset. The training samples
are converted to RGB color image format in the third step
and coded to train the VGG19 architecture, a CNN. The last
step was VGG19 neural network training with RGB images
and its hyperparameters optimization with the AO algorithm.

Experiments and evaluations showed that if the AO algo-
rithm is used in the feature selection phase and optimization
of VGG19 parameters, the proposed method’s accuracy, sen-
sitivity, and precision are 99.82%, 99.69%, and 99.76%,
respectively. The evaluations showed that the proposed
method is more accurate in detecting attacks than similar
architectures such as LSTM and CNN. Experiments show
that using the CGAN method in balancing the dataset com-
pared to the GANmethod improves the accuracy, sensitivity,
and precision of the proposed method by 1.2%, 1.51%, and
1.46%, respectively. The proposed method has less time to
detect attacks than random forest, CNN-GRU, and LSTM.
Themain advantage of the proposedmethod is themore opti-
mal balancing of the dataset than the GANmethod and more
accuracy than the CNN architecture in detecting attacks.
Another advantage of the proposed method is combining
swarm intelligence with deep learning to detect nested and
zero-day attacks. The challenge of deep learning methods
and the proposed method for detecting attacks is the consid-
erable time in the training phase.CombiningCNNandLSTM
architectures in attack detection and providing an intrusion
detection system for 5G networks is a recommendation for
future work.
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