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Abstract
Software testing is one of the software development activities and is used to identify and remove software bugs. Most small-
sized projects may be manually tested to find and fix any bugs. In large and real-world software products, manual testing is
thought to be a time and money-consuming process. Finding a minimal subset of input data in the shortest amount of time (as
test data) to obtain the maximal branch coverage is an NP-complete problem in the field. Different heuristic-based methods
have been used to generate test data. In this paper, for addressing and solving the test data generation problem, the black
widow optimization algorithm has been used. The branch coverage criterion was used as the fitness function to optimize the
generated data. The obtained experimental results on the standard benchmarks show that the proposed method generates more
effective test data than the simulated annealing, genetic algorithm, ant colony optimization, particle swarm optimization,
and artificial bee colony algorithms. According to the results, with 99.98% average coverage, 99.96% success rate, and 9.36
required iteration, the method was able to outperform the other methods.

Keywords Software-test generation · Black widow optimization algorithm · Branch coverage · Success rate · Stability

1 Introduction

Software testing is one of the most important stages of soft-
ware quality assurance [1–4]. Software testing is the process
of finding program bugs via real execution. The software test
can be conducted manually or automatically. In real-world
software, software testing activities might be quite time-and
money-consuming. Thus, automatic testing may have sev-
eral advantages over the latter approach, such as: reducing
the amount of testing time, reducing the amount of testing
cost, and improving the reliability of the software product
[5, 6]. Automatically generating effective test data is one
of the research fields in software engineering. The research
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issue that was addressed in this study is automatically gen-
erating effective test data for a unit of source code. In this
study, branch coverage is considered as a criterion to eval-
uate the effectiveness of the generated test data. Finding a
minimal subset of input data in the shortest amount of time
(as test data) to obtain the maximal branch coverage is an
NP-complete optimization problem in the field.

For generating test datawith the greatest amount of branch
coverage, several heuristic and evolutionary strategies have
been introduced [7]. The difficulty in covering all program
branches, the low average success rate in providing data
with maximum coverage in multiple executions, the inability
to provide consistent results in various executions, and the
longer execution time are considered as the disadvantages of
the prior techniques. The present study’s objectives are as
follows:

• Generation of test data with the most branch coverage
• Increasing the success rate in test-data generation with the
maximum coverage

• Decreasing the required time of test data generation with
maximum coverage
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In this research, we suggested a method for the automatic
production of test data with the greatest branch coverage
and minimal time by modifying and using the black widow
optimization algorithm (BWOA). It should be emphasized
that BWOA performs more effectively than similar swarm-
based heuristic algorithms in software test generation. The
following are the main contributions of the current paper:

• Modifying and applying BWOA for generating optimal
test data

• Generating amaximum-coverage test suit with aminimum
amount of time

• Implementing and providing an open-source tool for
automatically generating coverage-based test data for a
program source code.

• Generating consistent resultswith a low standard deviation

The remaining sections are arranged as follows: Sect. 2
provides a brief overview of relevant research. The suggested
method is described in Sect. 3. The suggested method’s
results and their comparison to other relevant methods are
the topics of Sect. 4. Section 5 provides the study’s findings
as well as recommendations for more research.

2 Related studies

Researchers [8] suggested an automatic method to test data
generation using a random approach. The primary limita-
tions of this method are thought to be the extremely high time
needed for reaching the necessary coverage and the creation
of repeating data. Additionally, this method did not yield the
desired results in terms of the number of bugs found. There-
fore, to get better outcomes, researchers presented a strategy
based on symbolic execution [9]. An efficient testing method
that enables the automated generation of test data inputs that
result in software defects is symbolic execution. One of the
key advantages of symbolic execution is the production of
concrete test inputs, which have great coverage. Specific and
high-coverage test data cause the issue in terms of bug find-
ing. Array value and pointer inputs cannot be determined via
symbolic techniques. To generate effective test data (high
coverage), the simulated annealing technique was used [10].
The simulated annealing approach is used to produce optimal
test data by transforming the test data generation problem
into an optimization problem. The primary drawbacks of
this approach are its poor performance, insufficient cover-
age, and local optimum placement. For behavioral testing,
this approach is suitable.

A technique for generating test data was put out in [11]
by utilizing genetic algorithms (GA). In this technique, the
best test paths were chosen using GA. This study’s fitness
function called the similarity function, sought to quantify

how closely the covered path resembled the intended one.
Path optimality implies that the path was used when running
the test data. In otherwords, a path’s optimality increaseswith
increasing path follow-up. The time needed to discover the
best path is reduced as a result of the use of GA. Researchers
used a parallel implementation of GA technique to increase
efficiency and efficacy. After that, six benchmark programs
were used to examine the suggested method’s coverage. The
results showed that test data output has improved.

One of the main issues with GA is that the chromosomes
don’t strive to get better on their own and can only get
better through mutation. A portion of a chromosome can-
not be evaluated in GA; only the full chromosome is taken
into account by the fitness function. Thus, GA is similar to
blind search algorithms. The GA with reinforcement learn-
ing as a memetic search strategy has been proposed [12]
as an automated test-data creation method. This enhanced
GA concentrates on the population’s best chromosomes, and
Q-learning has been employed to direct the search process.
When a chromosome has duplicated parts, themutation oper-
ator is used in the procedure. Experimental results show that
in terms of success rate and branch coverage, this hybrid
method works better than pure GA. Particle swarm opti-
mization (PSO) was used by researchers in [13] to provide
test data. The PSO technique was used with different fitness
functions to generate the test data because of its ease of use
and quick convergence rate.

A technique using the ant colony optimization (ACO)
algorithm was proposed by [14] to provide the best test data
to maximize branch coverage. This technique defined a spe-
cial fitness function depending on coverage. The results of
the studies demonstrated that this approach had larger cov-
erage, faster convergence, and more stable outcomes. The
performance of the artificial bee colony (ABC), genetic,
simulated annealing, ant colony (ACO), and particle swarm
algorithms in terms of creating usable test data is compared
by the researchers [15]. This study uses a distance function
using the branch coverage (as the fitness function). Results
of trials indicated that, for this issue, the ABC algorithm’s
coverage, success rate, and convergence speed are, respec-
tively, 99.94%, 99.92%, and 3.36 iterations. Overall, the
ABC algorithm generated the best test data compared to the
other algorithms. In [16], the shuffling frog leaping algo-
rithm (SFLA) was used to provide a way for automatically
creating test data. This method’s fitness function included
branch coverage. It has been evaluated using the seven pre-
scribed benchmarks. In comparison to prior evolutionary and
heuristic algorithms like GA, PSO, ACO, and ABC, the find-
ings showed that this technique had several benefits. The
SFLA-based method can generate test data with the fewest
duplicates and 99.99% branch coverage. Additionally, with
a 99.97% success rate, it produces the best test results.
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Fig. 1 The workflow of the
proposed test generation method

Table 1 Different test generation methods based on heuristic algorithms

Method Advantages Disadvantages

Simulated annealing algorithm (SA) [10] Higher speed than random search Low success rate and local
optimum

Genetic algorithm (GA) [11, 12] Parallel implementation Low success rate, high
run-time and

Particle swarm optimization algorithm (PSO) [13] High-speed and simple implementation Low stability

Ant colony optimization algorithm (ACO) [14] Considering the weights of branches Low stability and High
runtime

Artificial bee colony optimization algorithm (ABC) [15] Appropriate branch coverage low run time Low stability

All in all, the existing test-data-generating methods have
their advantages and disadvantages which are briefly sum-
marized in Table 1. In other words, the issue of effective
test-data generation for automatic software tests has not yet
been entirely resolved. Consequently, an automated test-data
generationmethodutilizing themodified and customizedver-
sion of the BWOA optimization algorithm is proposed in this
researchwork. The authors try to fill the gap in earlier studies.
In Sect. 3, the suggested method is explained.

3 Proposedmethod

Figure 1 shows the steps involved in the method suggested
for the automated creation of unit-level test data. The source
code of the program is statically examined in the first stage,
and the necessary structural data is extracted for the next
steps. The number and data type of the program (function)
inputs, the number of branch instructions, and the conditional
expression for each branch are extracted in the first step. At
this stage, the program’s source code is statically analyzed
and the branches that need to be covered are extracted. If

the program has n lines of code, the time cost of this stage
will be O(n). The static analysis phase is executed as the
first step and the obtained results are provided for the next
steps of software testing. In the second phase, the conditional
expressions of the branch instructions are extracted. The third
step uses BWOA to generate the best test data. The coverage
of program branches was used to determine the objective
function of this study. Themain goal of the suggestedmethod
is to generate test data with the maximum branch coverage
in the shortest amount of time.

3.1 Test data generation by BWOA

In this paper, by capitalizing on BWOA, we developed an
automatic method for producing optimal test data. Algo-
rithm 1 indicates the pseudo code of the developed BWOA.
It should be noted that BWOA was inspired by black widow
spiders’ unique mating behavior [17]. The way of producing
automatic test data by BWOA is described in this section.
This algorithm operates based on the initial random popula-
tion of the spiders.
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Algorithm 1. The pseudo code of the developed BWO to generate software test data

Each member of the initial population (one piece of ran-
dom test data) is a spider. In the beginning, BWOA starts
with the initial spider population. That is, each spider indi-
cates test data. Themale spiders are eaten by the blackwidow
after mating. She then transports the sperms that were previ-
ously kept in her own sperm cavities and releases them into
the egg sacs. Spiders emerge from their eggs after 11 days.
They spend a few days to a week living on the mother net.
Cannibalism is seen among the population of newborn sib-
lings during this period. The phases of BWOA are shown in
Fig. 2.

Initial population: each spider is denoted by 1*Nvar array
as a test data. The structure of each spider is shown in Fig. 3.
For starting the algorithm, a widow matrix in the Npop*Nvar

size with the initial population of spiders is produced. Next,
the pair of parents are randomly selected so that they do the
mating operation. As mentioned above, the black widower is
eaten during or after mating.

Reproduction since spider pairs are independent of each
other, almost 1000 eggs are produced in each mating in real
life. However, those baby spiders survive and are stronger.
This method includes an exclusive stage, i.e. cannibalism.
In this stage, weak members of the population are removed
using fitness. This stage leads to the initial convergence. An
array, namely alpha should be created for reproduction. The
initial value of the widow array is determined using ran-
dom numbers. Next, children are produced using α in Eq. (1)
where x1 and x2 indicate the parents and y1 and y2 refer to the
children. Finally, children and mothers are added to a matrix
and are ranked based on their fitness. The best individuals
are added to the new population. This procedure is applied
to all the pairs.

{{
y1 � α × x1 + (1 − α) × x2
y2 � α × x2 + (1 − α) × x1

}
(1)
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Fig. 2 Process of BWOA for test data generation

Cannibalism and mutation there are three types of canni-
balism BWOA. The first type is sexual cannibalism in which
the black widow (a member with higher fitness) eats its male
pair. In this type of cannibalism, male and female spiders can
be distinguished from each other using the fitness function.
The second type of cannibalism is between siblings in which
stronger spiders eat their own weaker siblings. Each spider
indicates produced test data. In this type of cannibalism, a

Fig. 3 An instance of black widow indicating test data for a program
with 4 decimal inputs

CR (cannibalism rating) is devised based on which the num-
ber of survivors can be determined. In this stage, a certain
number of individuals are randomly selected from the popu-
lation. As depicted in Fig. 4, each of the generated test data
randomly exchanges two elements in the array. The value
of Mutepop specifies the mutation rate. Attaining the state
of convergence and stable conditions without any variations
is tantamount to achieving the state in which the algorithm
has generated data with top fitness (maximum coverage of
program branches).

3.2 Objective function

The objective of this study is to identify a small sample of
test data that has the greatest amount of branch coverage.
For comparing them to one another and choosing the best
test results, an objective function is constructed. The prob-
lem’s nature determines which function should be used. In
other words, it can be maintained that selecting an appropri-
ate objective function (Fitness function) is one of the critical
stages in optimization. The fitness function affects the oper-
ation of the heuristic algorithm in the search space. In the
field of creating test data, branch weight is seen to be one
of the most useful factors. This function displays the weight
for a branch predicate after the input values have been allo-
cated to the variables. Similarly, to that, this function was
applied in this paper to navigate the issue with the test data
generation process. The input program for this function con-
tains S branches (conditional and loop instructions). The bchi
denotes the ith branch instruction. If the number of inputs is
equal to m, each input will be determined by the variable
XkεTS (1 ≤ K ≤ m). Equation (2) was used to compute the
fitness of test data generated by BWOA in each iteration.

Fitness(Xk) � 1[
∅ +

∑s
i�1 wi . f (bchi , Xk)

]2 (2)

∅ is a constant that is set at the runtime according to the
program. The value of this parameter was 0.01 in this study.
The variable w indicates the weight of program branches. f
function, as the distance function, is computed via Eq. (3)
for a test dataset. The fitness (degree of coverage) of the test
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Table 2 Distance function of the predicates into the branch instructions

No Input
predicate

Value of distance function ( f (bchi ))
for the input predicate

1 Boolean If the value of Boolean predicate is true
then 0 else k

2 ~ a Negation is propagated over a

3 a � b If the value of abs(a − b) � 0 then 0
else abs(a − b) + k

4 a �� b If the value of abs(a − b) � 0 then 0
else k

5 a < b If the value of b is bigger than a then 0
else abs(a − b) + k

6 a ≤ b If the value of b is bigger or equal to a
then 0 else abs(a − b) + k

7 a > b If the value of a is bigger than b then 0
else abs(b − a) + k

8 a ≥ b If the value of a is bigger or equal to b
then 0 else abs(b − a) + k

9 a and b f (a) + f (b)

10 a or b min( f (a), f (b))

dataset generated by BWOA is determined by Eq. (3).

Fitness (T S) � 1/

[
∅ +

s∑
i�1

wi .min{ f (bchi .Xk)}mk�1

]2

(3)

Equation (3) will be assessed as 1/∅ if the resulting test
dataset (TS) can cover all of the branches. The maximum
fitness value is as a result attained. The suggested method
considers data with the highest fitness function value to be
more effective data. Equation (3) states that the distance func-
tion is used to calculate the fitness function. When values are
supplied to the variable inputs, the distance function provides
the presumable standard deviation for a conditional instruc-
tion (if or while instructions). For the expressions inside the
program’s conditional instructions, the distance function is
calculated following Table 2. If the conditional expression
in Table 2 is an integer based on the produced inputs, the
distance function’s value will be zero; otherwise, the value
of the δ variable will be added to the conditional expression’s
value. The value of the δ variable in this investigation was 0.1
[13]. Branch weight is applied for measuring the reachability
degree of program branches (conditional commands). If the
branch weight for a given conditional command is high, its
reachability (running probability) will be low; as a result, the
test data-generating algorithm should make more endeavors
for accessing that branch. The effective factors on branch
weights are as follows:

• The branch’s nesting weight

Table 3 Weights of the available operators in the conditional predicates

Operator Weight

� � 0.9

≥ , > , ≤ , < 0.6

Boolean 0.5

! � 0.2

• Branch’s predicate weight (complexity)

Equation (4) is used to calculate the nesting weight of
a branch instruction. It shows what level a certain branch
is at. Access to that branch will be more challenging given
the increased nesting level. The variable i in Eq. 4 stands
for the program’s lowest nesting level, nlmin, and the highest
nesting level, nlmax. Similar to Eqs. (3) and (5) is used to
normalize the branch’s nesting weight. The entire weight of
the branches is divided by the weight of the ith branch in this
equation.

wn(bchi ) � nli − nlmin + 1

nlmax − nlmin + 1
(4)

wn′(bchi ) � wn(bchi )∑s
i�1 wn(bchi )

(5)

The predicate weight reveals the degree of complexity of
the predicates inside the branches. If the input data show that
these predicates have true values, then they will be covered.
Predicate weight is calculated using Eq. (6) and Table 3. Two
possible modes in this equation are as follows:

• If the branch consists of h condition expressions that have
been connected by the and operator, the predicate’s over-
all weight is equal to the second root of the sum of the
predicates.

• If the relevant branch includes h conditions that have been
connected using the or operator, the condition predicates
with the lowest weight amount will be picked.

wp(bchi ) �

⎧⎪⎨
⎪⎩

√∑u
j�1 w2

r

(
c j

)
, i f conjunction is and

min
{
wr

(
c j

)}
, i f conjunction is or

min{wr
(
c j

)}hj�1, otherwise

(6)

In Eq. (6), the variable (1 ≤ i ≤ s)bchi stands for the ith
branch. For calculating the predicate weight (complexity) for
the ith branch, h variable is used which refers to the number
of predicates in the branch. c j , (1 ≤ j ≤ h) denotes the ith
condition andWr indicates theweight of the conditionwhose
value is set according to Table 3. Also, Eq. (7) is used to
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Fig. 4 Mutation operator on the
population elements

normalize the predicates’ weight.

wp′(bchi ) � wp(bchi )∑s
i�1 wp(bchi )

(7)

The weight of each branch was finally determined using
Eq. (8). It implies that the predicate weight of the branch
as well as its nested weight are included in each branch’s
weight. The weight of the ith branch is indicated by Wi.
Predicate weight and nested weight were both identical in
this study, and the value of α was 0.5.

wi �∝ .wn′(bchi ) + (1− ∝).wp′(bchi ) (8)

4 Results

4.1 Implementation platform

The outcomes of putting the suggested strategy into prac-
tice are reported, assessed, and debated in this section. The
MATLAB platform was used to put the suggested tech-
nique into practice. It is true that this software is extensively
applicable and offers the chance for many computational
operations, demonstration operations, and programming.
Here, the results obtained from implementing and executing
the proposed method via Mat Lab software are analyzed and
discussed. MATLAB Version 2021 was used in this study.
The computer system’s specs are as follows, and it will be
utilized to implement the suggested method: Intel corei7,
8 GB of RAM. The proposed method was implemented on
Windows 10 operating system. Software test-data generation
has recently made extensive use of algorithms including GA,
SA, ACO, PSO and SA. The Matlab platform was used to
implement the suggested method and also the methods based
on GA, ACO, ABC, PSO and SA and SA. All the methods
were implemented and executed on the same computer with
the identical operating system and the same specifications,
namely Intel corei7 and 8 GB of RAM. The criteria used to
evaluate the method proposed in this study are as follows:

1. Average coverage (AC) measures how well program
branches are covered by the test suit that is generated.
Higher scores for this criterion denote greater perfor-
mance.

2. The average number of iterations required by a specific
technique to cover all programbranches is represented by
the average generation (AG) criteria. A certain strategy
performs better when it receives lower scores for this
criterion.

3. The average time (AT) criterion describes the amount of
time needed to cover all program branches. Milliseconds
are used to measure this criterion (ms). Lower values
for this criterion indicate the greater performance of the
specified approach.

4. Success rate (SR)measures the chance that the test results
will cover every program branch. Greater performance is
indicated by higher scores on this criterion.

The number of iterations is taken into consideration as the
termination condition in all algorithms to generate test data.
A maximum of 300 iterations of the algorithms were per-
formed for each execution. Additionally, each algorithm was
run 10 times (each execution includes 300 iterations). The
average results and standard deviations were then calculated
and compared following 10 executions.

4.2 Benchmarks

In this study, 6 programs with differing degrees of complex-
ity, which have been used in related works, were taken into
consideration. Table 4 lists the features of these six bench-
mark programs. The benchmark programs’ source code is
written in the C++ programming language. The programs’
test datasets were created using the GA, SA, ABC, ACO,
PSO, andGAalgorithms. The parameters of the implemented
optimization algorithms were shown in Table 5.

4.3 Results evaluation

A comprehensive set of experiments were carried out on the
implemented techniques once the suggested approach and
the other algorithms (GA, SA, PSO, ACO, ABC). Six bench-
mark programs that were presented and discussed in Table 3
were used in the trials to generate test data for each approach.
The benchmark program included a variety of programming
constructs, including loops, conditional structures, and sev-
eral types of data. In earlier research, these programs were
heavily utilized. The evaluation criteria mentioned in sub-
Sect. 4.2 are AC, AG, SR, and AT. The average coverage
(AC) of branches by the generated test data is regarded as the
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Table 4 The features of the benchmarks used to evaluate the test generating methods

Programs #Args Args. type LOC Specification

TriangleType 3 Integer 31 This program classifies a three-integer input integer as a type of triangle

valDay 3 Integer 72 This software determines the weekday

IsValidDate 3 Integer 41 This program Checks an input date is valid or not

cal 6 Integer 26 This program takes two dates and compute the days between them

remainder 2 Integer 17 This program calculates the remainder of two integer division

printCalender 2 Integer 124 This program prints calendar according to the inputs

Table 5 Calibration parameters of different replication algorithms that have been adjusted experimentally

Algorithms Parameters Value

Genetic algorithm(GA) Number of chromosomes Depend on the program Line of code

Length of chromosome Number of program inputs

Crossover rate 0.7

Mutation rate 0.05

s 100

Ant colony optimization (ACO) Number of ants Number of program inputs

Initial pheromone (τ) 1

Q parameter 1

Pheromone power weight (α) 1

Evaporation rate (ρ) 0.05

Number of iterations 100

Artificial bee colony algorithm (ABC) Number of bee Depends on the program line of code

Number of food source Number of Bee/2

Limit parameter 15

Number of iterations 100

Simulated annealing algorithm (SA) Colony size Depends on the program lines of code

Start temperature 1

Linear cooling parameter 0.8

Number of iterations of temperature 50

Particle swarm optimization algorithm (PSO) Number of particles Depends on the program lines of code

Inertia weight 0.8

Inertia weight damping ratio 0.99

Particle.C1 and particle.C2 1.8

Number of iterations 100

Black widow optimization algorithm (BWO) Colony size Depends on the program line of code

Procreate rate 0.6

Cannibalism rate 0.4

Mutation rate 0.4

Number of iterations 100
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Fig. 5 AC of the test suit generated for each program by test-generating methods

Table 6 Average branch
coverage of the test suit
generated by different methods

Criteria GA SA PSO ACO ABC Proposed method (BWO)

Average coverage (AC %) 96.67 98.49 99.94 99.97 99.93 99.98

first and most crucial requirement. Each test data-generating
technique for each benchmark program was run ten times
to calculate the average branch coverage. Then, the average
value of the results was taken into consideration. The aver-
age branch coverage by the generated test data using various
approaches is shown in Fig. 5. The test data generated using
the suggested method in all programs except the remainder
program reached 100% coverage, according to the findings
attained. Test data with a 99.90% coverage was produced for
the remainder program. Table 6 gives the average coverage
of the test data generated by different methods. As given in
Table 6, the proposed method was able to generate test data
with an average coverage of 99.98%.

Another factor used to assess howwell the suggested strat-
egy performed was the success rate. It shows the extent to
which the suggested strategy was successful in producing
test data that completely covered all of the program branches.
Another series of trials were run as part of this investigation.
In other words, each test data generation technique for each
benchmark program was used ten times. The success rate of
the method is defined as the average number of times the
generated data reaches 100% coverage. The success rates of
several test data generation techniques are shown in Fig. 6.
The suggested technique outperformed the other methods on
the benchmark programs concerning this benchmark, accord-
ing to the experiment’s findings. Table 7 gives the average

success rate for different methods. On average, the proposed
method, with 99.96% probability, was able to generate test
data with 100% coverage.

Convergence speed is another criterion that was used for
evaluating and investigating the proposed method. This cri-
terion focuses on the time and expense of producing test data
with the greatest coverage. The number of iterations nec-
essary for a specific technique to provide test data with the
greatest amount of branch coverage is known as convergence
speed. Higher convergence speed is indicated by fewer repe-
titions. A technique that uses fewer repetitions produces test
data more quickly. Figure 7 shows the typical number of iter-
ations needed across 10 distinct executions to provide the best
test results (maximumcoverage). The results reveal that, after
ABC algorithm, has the lowest number of iterations. Hence,
it can be maintained that it has the highest speed in test data
production. The average convergence speed of different test-
generating methods is shown in Table 8.

Stability is another evaluation criterion that was used con-
cerning heuristic algorithms. A method based on heuristic
algorithms may produce efficient test data in one execution;
however, it may have poor data production in its next execu-
tions. Thus, in this study, we executed test data production
methods 100 times and computed their average results along
with standard deviation. Figure 8 shows the stability of differ-
ent methods in producing test data in TriangleType program
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Fig. 6 Success Rate of different algorithms in producing the test suits which have 100% coverage

Fig. 7 The number of required generations (convergence speed) by each evolutionary method to generate maximal-coverage test data

Table 7 Average success rate of
different algorithms Criteria GA SA PSO ACO ABC Proposed method

(BWO)
Best
method

Success rate (SR
%)

80.60 97.88 99.81 99.83 99.92 99.96 BWO

Table 8 Iterations required by different algorithms to reach maximum branch coverage

Criteria GA SA PSO ACO ABC The proposed method (BWO) Best method

Average generation (AG %) 24.14 27.22 8.98 9.90 3.36 9.35 ABC
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Fig. 8 The stability of different test generation method in different benchmark program
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Table 9 The automatically generated test suit for remainder program
that calculates the remainder of dividing two integers input

#Test data Input1 Input2

1 82 20

2 33 7

3 94 4

4 64 51

5 93 99

6 7 83

7 10 22

8 8 64

9 64 46

10 53 62

11 80 79

12 61 51

13 21 95

14 73 66

15 76 17

16 0 36

17 67 25

18 15 9

19 60 0

20 61 15

for different methods. The convergence regarding Triangle-
Type program for 4 algorithms, i.e. GA, PSO, ACO and the
proposed method was examined and analyzed. As depicted
in Fig. 8, the stability of the proposed method in the Tri-
angleType program was better than those of other methods.
Regarding calDay program, stability of the proposedmethod
as well as ACOwas better than other methods. Figure 8 illus-
trates stability of the proposed method as well as the other
methods on isValidDate program. It was discovered from
the findings that ACO and the suggested technique outper-
formed the other algorithms. Furthermore, the stability of
the algorithms on Cal program is also shown. In this bench-
mark program, different algorithms had quite similar results.
Nonetheless, the obtained results for the proposed method
slightly improved the results of othermethods. PSOandACO
had more stability in the remainder program. Moreover, in
the endingpart of Fig. 8, the stability of the algorithms regard-
ing printCalendar program is illustrated. PSO and ACO
algorithms had better results and GA had the poorest per-
formance on this program. Table 9 shows the generated test
suit for the remainder program which includes 2 input data.
These data were generated automatically by the proposed
method.

According to the obtained results for the different meth-
ods on the benchmark programs, it can bemaintained that the
blackwidowoptimization algorithm (BWOA) had lower per-
formance than ACO in some cases and programs. However,
in general, BWOA was more stable than the other methods.
The consideration and analysis of the convergence criterion
in all 6 benchmarks revealed that the proposed method, on
average, had earlier (faster) convergence in most benchmark
programs. Thanks to the lower dispersion and deviation of the
proposed method, it should be highlighted that it is generally
more stable than the other methods. Table 10 indicates the
execution time of different test generation algorithms. The
proposed BWO based test data generator is superior to the
other algorithms in terms of execution time. The benchmark
programs selected in this study includes the real-world struc-
tures. All benchmarks include conditional structures (if and
loop structures), arithmetic and logical operators. The soft-
ware complexity (cyclomatic and Halstead metrics) of the
selectedbenchmarkprograms is higher than thenormal appli-
cation programs. Furthermore, the authors have conducted
other experiments on the other benchmark programs. The
selected benchmark programs include different arguments
with different datatypes. Different type arguments force the
test data generation algorithms. Indeed, the selected bench-
mark programs are not simple to cover programs. Table 11
shows the average coverage of the generated test data by dif-
ferent algorithms for other real-world benchmark programs.

Test data generation is a discrete NP-complete problem.
All the existing heuristic algorithms may have lower per-
formance in the test generation problem. In this study, the
algorithms have been selected based on their structural fea-
tures that are suitable for the structure of the test generation
problem. The final population of the selected algorithms
includes the best generated test suite. The authors have
implemented different test generation algorithms in the same
software and hardware platform. The selected test genera-
tion heuristic algorithms have different features. Some of
them have evolutionary features (GA and SA); the others
have swarm intelligence features. Regarding the conducted
results, GA, SA, PSO, ACO, ABC and BWO algorithms
have higher suitability, performance, success rate and con-
vergence than the similar algorithms. Hence, in this study,
these algorithms have been selected to sort out the test gen-
eration problem. The priority of the generated test cases by
a test generation algorithm is one of the important parame-
ters that should be taken into account [6, 18]. Taking the test
priority into account is considered as the one of future study.
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Table 10 Average required time
to generate test suit with
maximum branch-coverage in
different methods (Second)

Benachmark GA SA PSO ACO ABC BWO

triangleType 10.83 3.77 0.19 6.22 0.1758 0.1701

calDay 35.73 1.79 0.35 12.84 0.2375 0.1330

isValidDate 11.68 2.43 0.54 19.94 0.1944 0.1586

Cal 11.41 0.73 0.50 11.18 0.1367 0.1051

Reminder 6.09 1.01 0.17 10.49 0.0931 0.0827

printCalendar 35.48 35.38 1.41 96.27 0.1826 0.1839

Table 11 Average coverage of
the generated test suit by
different algorithms

Benachmark GA (%) SA (%) PSO (%) ACO (%) ABC (%) BWO
(%)

IsLeapYear (1 Arg.) 37 37 42 58 60 74

CheckDivisibility (3 Args.) 100 100 100 100 100 100

aes data encryption (2 Args.) 25 39 61 67 66 67

ComplexMethod (3 Args.) 41 48 79 78 81 81

ElevatorStatus (3 Args.) 69 72 81 80 84 87

5 Conclusion

To automate software testing, a BWOA-based technique was
suggested for the generation of test data. On six common
benchmark programs, the suggested method was assessed.
Branch coverage, average number of generations, success
rate, and stability were used to evaluate the experiment’s
findings. The suggested technique outperformedABC,ACO,
PSO, SA, and GA in the experiments, according to the evalu-
ation criteria. Regarding the results, the proposedmethod can
be used as one of the successful test generation methods by
researchers and software developers. High convergence, high
coverage, high stability, and success rate are the main merits
of the method compared to the existing methods. In addi-
tion, the use of a hybrid algorithm such as the combination
of ACO and BWOA is suggested as a future study. Modi-
fying the fitness function of this study to cover the strategic
and error-prone codes of a program instead of all coverage
is considered another future study. The optimization algo-
rithms and methods suggested in [3, 19–24] can be used to
generate software test data. The error-propagation rate of the
program instructions can be taken into account in the future
studies.
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