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Abstract Here, we present multivariate quantitative approximations of Banach space valued continuous mul-
tivariate functions on a box or RV, N € N, by the multivariate normalized, quasi-interpolation, Kantorovich-
type and quadrature-type neural network operators. We examine also the case of approximation by iterated
operators of the last four types. These approximations are achieved by establishing multidimensional Jackson
type inequalities involving the multivariate modulus of continuity of the engaged function or its high-order
Fréchet derivatives. Our multivariate operators are defined using a multidimensional density function induced
by the Richards’s curve, which is a generalized logistic function. The approximations are pointwise, uniform
and L . The related feed-forward neural network is with one hidden layer.

Mathematics Subject Classification 41A17 - 41A25 - 41A30 - 41A36

1 Introduction

Anastassiou in [2,3], see chapters 2-5, was the first to establish neural network approximations to continu-
ous functions with rates by very specifically defined neural network operators of Cardaliaguet—Euvrard and
“Squashing” types, by employing the modulus of continuity of the engaged function or its high-order deriva-
tive, and producing very tight Jackson type inequalities. He treats there both the univariate and multivariate
cases. The defining these operators “bell-shaped” and “squashing” functions are assumed to be of compact
support. Also, in [3], he gives the Nth-order asymptotic expansion for the error of weak approximation of
these two operators to a special natural class of smooth functions; see chapters 4-5 there.

Motivations for this work are the article [22] of Chen and Cao, and [4-20,23,24].

Here, we perform multivariate sigmoid function by Richards’s curve [30] based neural network approxi-
mations to continuous functions over boxes or over the whole R¥, N € N, and also iterated and L , approx-
imations. All convergences here are with rates expressed via the multivariate modulus of continuity of the
involved function or its high-order Fréchet derivative and given by very tight multidimensional Jackson type
inequalities.

We come up with the “right” precisely defined multivariate normalized, quasi-interpolation neural network
operators related to boxes or RV, as well as Kantorovich-type and quadrature-type-related operators on RV .
Our boxes are not necessarily symmetric to the origin. In preparation to prove our results, we establish important
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properties of the basic multivariate density function induced by the sigmoid function related to Richards’s curve
and defining our operators. Richards’s curve among others has been used for modeling COVID-19 infection
trajectory [26].

Feed-forward neural networks (FNNs) with one hidden layer, the only type of networks we deal with in
this article, are mathematically expressed as

n
N, (x):cho ((aj ~x>—|—bj), xeR’, seN,
j=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection weights, ¢; € R are the
coefficients, (a i x) is the inner product of a; and x, and o is the activation function of the network. In many
fundamental network models, the activation function is based on the Richards’s curve sigmoid function. About
neural networks, see [25,27,28].

2 Background

A Richards’s curve is [30]

1
‘P(x)=m, x€R,u>0, (D

which is strictly increasing on R, and it is a sigmoid function. For small 0 < p < 1, our Richards’s curve,
which is a smooth function, is expected to behave better than the ReLu activation function. We have that
¢ (400) = 1 and ¢ (—o0) = 0.

We consider the following activation function:

1
G(x)=§(<p(x+1)—<p(x—1)), x €R, 2)

whichis G (x) > 0, all x € R.
‘We have that

1
90)=7 and ¢x)=1-¢(=x). 3)

Clearly, G (—x) = G (x), and

GOy=-2—1 @
C2(r 4+ 1)
In [20], we prove that
G’ (x) < 0for x > 0, so that
G (x) is strictly decreasing on (0, +00) .
Clearly, then G (x) is strictly increasing on (—o0, 0) , along with G’ (0) = 0.
Also, it holds G (c0) = G (—o0) = 0.
Conclusion, G is a bell symmetric function with maximum as in (4)
Goy= - ~1 0
= > 0.
26+ 1)
We mention
Theorem 2.1 [20] We have
o0
Y Gx-i=1, VxeR 5)

i=—00
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Theorem 2.2 [20] It holds
0
/ Gx)dx =1, (6)
—00

so that G is a density function.

Theorem 2.3 [20] Let0 < o < 1, u > 0 and n € N withn'=% > 2. It holds

> G (nx —k) < w>0. (7

1
on(n=0-2)”

Denote by |- the integral part of the number and by [-] the ceiling of the number.

Theorem 2.4 [20] Let [a, b] C Rand n € N, so that [na| < |nb] . It holds

1 4(1+4e 2
[nD] =< (1 = ), m>0 (®)
Zk:rmﬂ G (nx — k) —¢€
Vxela,b].
‘We make
Remark 2.5 [20]
(i) We have that
lnb]
lim Y G —k) #1, ©)

k=[na]

for at least some x € [a, b].

(i1) Let [a, b] C R. For large n, we always have [na] < |nb] . Also, a < lr—j <b,iff [na]l <k < |nb].

In general, it holds

[nb]
Y Gox—k =<1 (10)
k=[na
We introduce
N
Z(X1,...,xN) = Z (x) :=l_[G(xi), x=(x1,....,xy) e RV, NeN. (11)
i=1
It has the properties
(i) Z(x)>0,Vx eRVN,
(ii)
o
Y Z(x—k) = Z Z Z Z o —kiyoo xy —ky) =1, (12)
k=—00 =—00ky=—00 ky=—00
where k := (ki, ..., k) € ZV,V x € RV,
hence
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(iii)
o
Y Zix—k =1 (13)
k=—o00
VxeRN:neN,
and
(iv)
/ Z(x)dx =1, (14)
RN
that is, Z is a multivariate density function.
Here, denote |x|lo := max{|xi|,...,|xn]|}, x € RV, also set oo = (00,...,00), —00 =
(—o0, ..., —00) upon the multivariate context, and
[na] = ([nail, ..., [na ), 0s)

lnb] := (lnb1], ..., nby]),

where a := (a1, ...,an), b := (by,...,bn).
We obviously see that

[nb] [nb] N
Z Z(nx —k) = Z (l_[ G (nx; — ki))
i=1

k=[na] k=[na]

lnb1) nby | N N [nb;]
= > .. > (HG(nxi—ki))zl_[ > G-k |- (16)
i=1

ki=[nay] ky=[nay1 i=1 \ki=[na;]

ForO < f < 1landn € N, afixed x € R, we have that

[nb]
Z Z (nx — k)
k=[na]
Lnb] [nb]
- > Z (nx — k) + > Z (nx — k). (17)
{ k = [na] : k= [na]
1% = *llo = 75 15—l
In the last two sums, the counting is over disjoint vector sets of k’s, because the condition H L —x HOO > nLﬁ
implies that there exists at least one k; — x| > nL:B’ wherer € {1, ..., N}.
(v) As in, Theorem 2.3, we derive that
5 Zox-0 2 —L o =0 18
Z (nx_)<eu(nl—”3—2)’ <B<lu=>0, (18)
k = [na]
15 = *llo > 7

withn e N:nl=f =2 x e ]_[fv:l [ai, bi].
(vi) By Theorem 2.4, we get that

N

1 4(14e2)

0< 7] ~ < o n , (19)
Zk:[na] Z (nx —k)
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nw>0Vxe (]_LN:I [a,-,b,-]) ,neN.
It is also clear that

(vii)

— 1
Z Z(nx—k) < m, (20)
L1551

nw=>00<p< l,neN:nl"#>2 xRV,
Furthermore, it holds

Lnb]
lim Y Zmx—k) #1, Q1)
k=[na

for at least some x € (]_[lN=1 [a;, bi])
Here, (X, [|-[l, ) is a Banach space.

Let f € C (]_[f\/:l [ai,bi],X) , X = (X1,...,xN) € HlN:l [a;, bi], n € N, such that [na;] < |nb;],
i=1,...,N.
We introduce and define the following multivariate linear normalized neural network operator (x :=

(1) € (T L bil)):

b
ZIEH Hna'l ( ) Z (nx — k)
b
Y 1 Z (nx — k)

lnby] lnby | lnby] k k N
Zklzl[nal] Zkzzzmaz] ZkN NrnaN] (71 T TN) <1_[i:l G (nx; — ki))

L,(f,x1,...,xn) =L, (f,x):=

N Lnb; | (22)
[Tit ( ki=[na;] G (nxi — ki))
For large enough n € N, we always obtain [na;] < |nb;],i =1,..., N. Also, a; < % < b;, iff [na;] <
ki < LnbiJ,iZ 1,....N
When g € C (]_[f\]: 1 lai, bi]) , we define the companion operator
[nb]
~ g Z (nx — k)
Ln (g,x) — Zk [nal ( ) ) (23)

b
Z,E":Hna] Z (nx —k)

Clearly, L, is a positive linear operator. We have that

N
L,(,x)=1, Vxe (]‘[ [a,-,b,-]> :

i=1

Notice that L, (f) € C (1‘[ | lai, bil, X) and L, (g) € C (]‘[f":1 [ai, bi]) .
Furthermore, it holds

Lnbjna ||f( )” Z (nx - k) ~
Lt Dnbj : =L, (If1,.x) (24)
> i na1 Z (nx — k)

ILn (fs 0y <

VxellY, [, bil.
N
Clearly, || /1, € € (T lai. bil)
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Therefore, we have that
ILn (f )0, < L (11l . x), (25)
Vxe[lY,la.bi].¥neN,Vfe C(]‘[Z?V:1 [ai,bi],X>.

Letce Xandg € C (]_LN=1 lai, b,-]) ,thencg € C <]_[1N=1 lai, bil, X) :
Furthermore, it holds

N
Ly(cg.x)=cLy(g.x). Vxe][]laibil. (26)
i=1

Since Zn (1) = 1, we get that
L,(c)=c, VcelX. (27)

We call L,, the companion operator of L.
For convenience, we call

Lnb]

k
Ly (f.x) = ij(;)zmx—m

k=[nal

nb1]  |nby] Lnbn] ki kn N
=Y >y ¥ f(;,...,7>(HG(nxi—ki)) (28)
i=1

ki=[nai] ka=[nay] kn=[nay1

Ve (1‘[,?V=1 [ai,bi]).

That is
L% (f,
b 5= S (Z(Z —k) =
k=[na)
Vxe (]_[lN:l [ai,bi]> ,neN.
Hence
Ly (£ = f 0 (X Z 0k =)
> k=na] Z (nx — k)
Consequently, we derive
19 (4(1 +e 2 N o
|uﬂﬁw—famy5(1&£5¥> Li(fx)—f() Y Znx—k 31)
k=[na]

Vxe (1‘[,”=1 [ai,bi]).
We will estimate the right-hand side of (31).
For the last and others, we need the following.

Definition 2.6 [15, p. 274] Let M be a convex and compact subset of (R, ||-]| ), p € [1, 0], and (X, ||]I,,)
be a Banach space. Let f € C (M, X) . We define the first modulus of continuity of f as

w1 (f,8) = sup If ) —FMl,. 0<é8<diam(M). (32)
X, yeM:
Ix = yll, <8

If § > diam (M), then
w1 (f,8) = w1 (f, diam (M)) . (33)
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Notice wy (f, 8) isincreasingin § > 0. For f € Cp (M, X) (continuous and bounded functions), w; (f, §)
is defined similarly.

Lemma 2.7 [15, p. 274] We have w1 (f,8) — 0asd | 0, iff f € C (M, X), where M is a convex compact
subset of (RN, ||-11,,) . p € [1, 00].

Clearly, we have also: f € Cy (]RN , X ) (uniformly continuous functions), iff w; (f,8) — 0asé§ | 0,
where ) is defined similarly to (32). The space Cp (RN , X ) denotes the continuous and bounded functions
on RV,

When f € Cp (RV, X), we define

S k
Bn(f9x) :ZBn(f,X],...,XN) = Z f(;)Z(nx—k)

k=—00

ki ke ky al
Z Z Z f( 7) ]_[G(nxi—k,-) , (34)
kl_*OOkz_*OO kN—foO i=1

neN,VxeRN, N eN, the multivariate quasi-interpolation neural network operator.
Also, for f € Cp (RN , X ) , we define the multivariate Kantorovich-type neural network operator

) k+1
Co (f,x)=Cy(f,x1,...,xN) := Z (nNﬁn f(t)dt)Z(nx—k)

k=—00 n

00 k1+l kp+1 ky+1
Z Z Z ( ﬁ ﬁ f(tl,...,tN)drl...dtN)
2 N

ki=—00 kp=—00 ky=—00 n

N
: (HG (nx; — /q-)) : (35)
i=1

neN, VxeRV,
Again, for f € Cp (RN , X ) , N € N, we define the multivariate neural network operator of quadrature-type
D, (f,x),n €N, as follows.

Let 6 = (01,...0,9N) e NV r = (r,....,rn) € ZN, w, = wyypy sy > 0, such that 3_w, =
N 1. N
Z 1=0 Zrz—o Zero Wy ry,..ry = 15 k € Z" and

n

Sk () = Sk ok () —Zwrf< ’)

no
01 6
kl 71 ky ky — rn
:ZZ...Zwrlrz er( n—{—g,,?‘i‘w), (36)
r1=0r= ry=0 2 N
where 7 (%, 2—;, , g—’:f)
We set
oo
Dy (f, %) = Dy (fix1,.xn) == Y Sk (f) Z (nx —k)
k=—00
Z Z Z S ki ook (f) (1"16 (nxi — ki >) (37)
ki=—00 kp=—00 ky=—o00
VxeRY,

In this article, we study the approximation properties of L,, B,, C,,, D, neural network operators and as
well of their iterates. That is, the quantitative pointwise and uniform convergence of these operators to the unit
operator 1.
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3 Multivariate Richards’s curve neural network approximations

Here, we present several vectorial neural network approximations to Banach space valued functions given with

rates.
We give

Theorem 3.1 Let f € c(]‘[fv=l [ai,bi],X>, 0<B<l,u>0xc¢ (1‘[,”:1 [ai,bi]>,N,n e N with
n'=B = 2. Then

(1)
. _(40+em)! WA L4 »
” n (f7 x) - f (-x)”y = 1 — 672# ] <f7 n_'B> + eﬂ(’llilg_z) —. /] (n) ) ( )

and
2)
La () = £l | o <21 (39)

[l
We notice that lim, .o, L, (f) = f, pointwise and uniformly.

Above w is with respect to p = 00 and the speed of convergence is max (nl ﬁ) nL/f"

Proof We observe that

Lnb]
A@)=Ly(fx)=f() Y, Znx—k
k=[na]
Lnb] [nb]
= > f( )Z(nx—k)— Y f@Zmnx—k)
k=[na k=[na]

[nb] k
-y (f(;)—f(x))l(nx—k). (40)

k=[na
Thus

Lnb]
laml, < > Hf( )—f(X)

Z (nx — k)
k=[na 14

[nb] k
= > Hf(;)—f(x) Z (nx — k)
k = na] ’
[Ty
[nb] k
> ”f(;)—f(x) Z(nx — k)
k = [na 14
:H&—XH > 5
[nb]
2 o (f, niﬂ) 2l Y Zex—k
k= (ncﬂ
[|| Al

2
(g)wl(f,i>+M, 0<B<1l,u>0. 41)

e”(”liﬁ_z)
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So that
1y, 2]yl
1A @), <o (f’ n_ﬂ)—i_eu(nl—‘ﬁZ). (42)
Now, using (31), we finish the proof. O
‘We make

Remark 3.2 [15, pp. 263-266] Let (RY, |- ,), N € N; where |||, is the L,-norm, 1 < p < oo. R is
a Banach space, and (RN )] denotes the j-fold product space RV x --. x R endowed with the max-norm

J
||x||(RN),- = maxi<i<j [x1ll, . where x := (x1,...,x;) € (RY).

Let (X , ||‘||y) be a general Banach space. Then, the space V; = V; <(RN )j i X ) of all j-multilinear

continuous maps g : (RN)j — X, j =1,...,m, is a Banach space with norm
g (ol
gl :=lglly, == sup lg (o)l = sup ————"——. (43)
| beully - i,
”x”(]RN)/:l

Let M be a non-empty convex and compact subset of R and x¢ € M is fixed.
Let O be an open subset of RN : M C O. Let f : O — X be a continuous function, whose Fréchet

derivatives (see [29]) f(j) 0>V =V; ((RN)j ; X) exist and are continuous for 1 < j <m, m € N.

Call (x —x0)/ := (x —x0, ..., x —Xq) € (RN)j,x e M.
We will work with f|.
Then, by Taylor’s formula [21], [29, p. 124], we get

m o e(j) Y
f(x)zsz(xo)(x x0)’

5 + Ry (x,x9), allx e M, 44)
j=0 J
where the remainder is the Riemann integral
L —uym! m) (m) m
R (ex0) 1= | = (£ (0w (= x0)) = £ (30)) (x = x0)" ds (45)
0 (m — 1)'
here, we set f(© (xg) (x — x0)° = f (x0).
We consider
wizmon (f.8) = sup |7 @ - ™), (46)
X, yEM:
lx—yll,<h
h > 0.
We obtain

£ (xo +u (x — x0)) — £ (x0) ) (x — x0)"
Y
= £ o w20 = £ o) -l = xoll

u|lx = xol
< wlx —xolly (T” : (47)

by Lemma 7.1.1, [1, p. 208], where [-] is the ceiling.
Therefore, for all x € M (see [1, pp. 121-122])

w [T X = xoll, ] (1 —wym!
IR (x,xo)||y Ew“x_xO“p/O ’7 A —‘ (m—1)!
= w®y ([lx — xoll ) (48)
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by a change of variable, where

s e = 1 [ Com
cDm (t) Z‘/(; IVE-I Wdé‘:% j;o(“l—]h)_'_ , VireR (49)

is a (polynomial) spline function; see [1, p. 210-211].
Also, from there, we get

D, (1) < ﬂ+w+w VieR (50)
"= N m+ D 2m! 8m—1)]" ’

with equality true only at ¢ = 0.
Therefore, it holds

lx — xoll™*™lx —xol™  hllx — xol"!
R,, (x. < P P P_], VxeM. 51
1R (% xO)”V—w( mt D 2w T 8m—1) T e Gh
‘We have found that
I .
9 (x0) (x — x0)
f(x)—_Z e
Jj=0 v
lx — xoll™*thlx —xol™  hllx — xol™ !
< (m) h p p p 5
—“)‘(f )( m+ O T aml T sm—1 )= (52)

Vx,xg€ M.
Here, 0 < w; ( Fom, h) < 00, by M being compact and £ being continuous on M.
One can rewrite (52) as follows:

o .
9 (x0) (- — x0)’
EOEDY -
=0 I ,
[-—xoll™ Tt - = xoll”™ Al —xoll" !
< ) p P d P , v M, 53
—“’1<f )((m+1)!h Yo T TR 0 € (53)

a pointwise functional inequality on M. ‘
Here, (- — x0)/ maps M into (R")’ and it is continuous, and also, f/) (xo) maps (R")’ into X and it is
continuous. Hence, their composition f () (x0) (- — x0)? is continuous from M into X.

0 (x0) (-—x0)’ D (x0) (-—x0)7
Clearly, f () — Yy L2000 ¢ € (M, X) , and hence, | £ () — Yy L200e=0) Jecon.
Let {§N } nen D€ @ sequence of positive linear operators’ mapping C (M) into C (M) .
Therefore, we obtain
m , .
N Y (x0) (- = x0)’
Sn H fFO=3 - (x0)
; J:
j=0
14
(S (1 ==l ™)) o> (S (1 = %ol3) ) x0)
(m)
< wj (f h) +
(m+1)h 2m!
h (S (1 = %ol ")) o) N
+ 8(m —1)! (>4

VN eN,VxyeM.




Arab. J. Math. (2023) 12:11-33 21

Clearly, (54) is valid when M =[], [a;, b;] and S, = L,, see (23).

All the above is preparation for the following theorem, where we assume Fr échet differentiability of
functions.

This will be a direct application of Theorem 10.2, [15, pp. 268-270]. The operators L, Z,, fulfill its
assumptions; see (22), (23), (25), (26), and (27).

We present the following high-order approximation results.

Theorem 3.3 Let O open subset of (RN, ||-||p) , p € [1,00], such that l_[lN=1 [a;,bi] € O € RN, and
let (X, ||-||y) be a general Banach space. Let m € N and f € C™ (0O, X), the space of m-times con-
tinuously Fréchet differentiable functions from O into X. We study the approximation of f |1—[gv_ Ja b’ Let

X0 € (H,N:1 [ai, bi]> andr > 0. Then

ey

m

(L (/) 50 = Y % (La (£ (o) ¢ = x0)7) ) (0)

—
J y
1

o (G G LD PR

L rym], (55)
X|:(m+1) 2 8]’

<

(2) in addition, iff(j) (x0) =0, j=1,...,m, we have

I(Ln () (x0) — f (xo)l,,
1

wi (f(m), r ((Zn (|| _ x0||';’+1>> (xO)) m+1>
<

rm! ((Zn (||- — xo||;ﬁ+1)) (xo)) ()

1 ro omr?
X [ +-+ —] ; (56)

3
L () G0 = £ Gl < 3 % (20 (79 o ¢ = x0)) ) )|
j=1""
(f<’">, Lo (I = xol5*1)) o) ) .
er1 r <( ( rm!XO d )> - ) ((Zn (||- —XO||Z1+1)) (xo)>(m+]>
1 ro omr?
Lo 5T o
and

; = @ Springer
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4)
NHLw ) = Pl | 1

< Z 5
o <f(”“, P (Za (1 = xoll*1) ) o)
+

rm‘

(1= ) 0] )

ooxoe]_[ 1lai bl
1 +r+mr2
X -+ —.
m+1) 2 8

'H (12 o) ¢ = x0)7))

oco.xoel T [ai bi

m+l )
00.x0€[ 1L lai bi]

We need the following.

Lemma 3.4 The function ( (|I — x0||m>> (x0) is continuous in xo € (]_[lNzl la;, b,-]) ,m e N,

Proof By Lemma 10.3, [15, p. 272].
Remark 3.5 By Remark 10.4 [15, p. 273], we get that

o Q1 =2015)) €0 0 = L (1= 057)) 0

forallk =1,...,m

)

We give the following.
Corollary 3.6 (To Theorem 3.3, case of m = 1) Then

(M
I (5 o) = £ ol = | (Lo (£ 000 ¢ = x00) ) o]
tgron (50 (Ea (1= w013)) ) ) (Ea (1= 003)) )’
X |:1 +r+ §j| ,
and
@)
Lo D = £y | 11 s
(Lo (£ o) ¢ = x0))) N
S0 (f“’, P (=o)L ,1>
2
<[ (Zn (- = xol ))(XO)HMOEH, 1[a,b][1+’+ﬂ’
r > 0.
We make the following.

; = @ Springer
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(58)

(59)

(60)

(61)
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Remark 3.7 We estimate 0 <a <1, u >0, m,n e N: nl=@ > 2,

l|;n=bfjnal ”% — X0 H;no—H Z (nxo — k)

b
ZIEH:[Jna] z (”XO - k)

- >
Ly (I- = xoll5) (x0) =

_ N [nb] m+1
(19) (4(1+e2)
< (W > = =x0 Z (nxo — k) (62)
k=[na] o0
_ N nb] 1
4(14e ) k "
[ k = [nal o
S 1
: || Z — X0 “oo S n_"
lnb] k m—+1
+ > H;—xo Z (nxo — k)
[ k = [na] o
1
H; - OHOO =
N
0) (4(1 +e 2 1 b—a|"H
0 (4 ) L I al (63)
1 —e2u ne(m+1) en(n'=F=2)
(where b —a = (b —ay, ...,by —ay)).
We have proved that (¥ xg € H,N:1 [ai, b;i])
N
~ 4(1+e2) 1 b — al"™*!
+1 © =:
Ly (I = xollZ5H) (xo) < ( e prTTERy i o Ay (n) (64)

O<a< I,m,neN:nl—@ > 2, u>0).
And, consequently, it holds

120 (1 = 20125 G0 g gt

N
4(14e 20 1 b—alt
- ( ( )) { + 16 — allog =Ai(n) =0, asn— +oo. (65)

[ —e 20 pam+D) T (1P -2)

Therefore, we have that A| (n) — 0, asn — +o00. Thus, when p € [1, oo], from Theorem 3.3, we have
the convergence to zero iE the ri_ght—hand sides.of parts (1), (2).
Next, we estimate || (L, (£ (x0) (- — x0)7)) (x0) ||y .

We have that
F : S 9 (o) (£ = x0) Z (nxo — k)
(Z0 (59 o) ¢ = x0)7) ) (o) = =22 i~ x) . (66)
When p =00, j =1,...,m, we obtain
. k J . k J
9 o) (— - xo) = |r9 o H =~ G
n ) n ~

@ Springer
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We further have that

(20 (£ o —xo)f) (xo)H

2 Lan ;
2 (4(1 e ) 79 o (& —xo)j Z (nxo — B
1 —e2 n
k= [na] Y
b j
< <4(11 e ) > [ ol H— x| Zox-h (68)
- k=Tnal
4(1+ : i j
= ( (l_ee ) )f(]) (xO)H k:rzmﬂ H——)CO OoZ(nXQ—k)
4(1+ Lnb) j
- (=2 ) owll X [E ] zman
{ k = [na] o
]
k J
+ H;—xo Z (nxg — k)
{ k = [na] o0
= xol > e
@0) (4(1 +e_2 0 ||b —alll
< (T) HfJ (x )H oy 0 e (69)
That is
H (Zn (f(j) (x0) (- — xg)j>> (x())HV — 0, asn — oo.
Therefore, when p = oo, for j = 1, ..., m, we have proved
(20 (£9 o) € = x0)7) ) o) H
4(1+e 0 L b —alk
< <—1 e > Hf J (x0 )H { M(nl—;z,z)
4(1+e 0 Lo b—alk ]
< <?) |79 o {E+ewl—ﬂ_2) =t Ay (n) < o0, (70)

and converges to zero, as n — 00.

We conclude the following:
In Theorem 3.3, the right-hand sides of (57) and (58) converge to zero as n — oo, for any p € [1, 0o].
Alsoin Corollary 3.6, the right-hand sides of (60) and (61) converge to zero asn — oo, forany p € [1, oo].

Conclusion 3.8 We have proved that the left-hand sides of (55), (56), (57), (58), and (60), (61) converge to
zeroasn — 090, for p € [1, 0o]. Consequently, L, — I (unit operator) pointwise and uniformly, asn — 00,
where p € [1, 00]. In the presence of initial conditions, we achieve a higher speed of convergence; see (56).
Higher speed of convergence happens also to the left-hand side of (55).

We further give the following:
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Corollary 3.9 (To Theorem 3.3) Let O open subset of (RY, |||l , such that MY, lai,bi] € O € RY,
and let (X, ||'||V) be a general Banach space. Let m € N and f € C™ (0O, X), the space of m-times con-
tinuously Fréchet differentiable functions from O into X. We study the approximation of f |1—[gv_ lar bl Let

Xo € <]_LN21 la;, b,~]> andr > 0. Here, Ay (n) as in (65) and Ay (n) as in (70), where n € N : nl=* > 2,
O<a<l,u>0,j=1,...,m.Then

(1

(Lo () G0 = Y % (Lo (£9 (o) ¢ = x0)7) ) (o)

j=0"" y
o (£, 7 (ay )77 (e[t r m?]
: - e e R R oIt v

(2) in addition, iff(j) (x0) =0, j=1,...,m, we have
1Ly (f)) (x0) — f (x0)ll,

£, r (A ()T . 2
3 w1< r (A (n )(Al(n))<"‘“)|: 1 r mr } (72)

rm!

m+n 277
3

m

1020 ) = P oo 112ty =< 2

j=1

Az (n)
Jj!

™ 1 (Ay (m)) T .
] (f r (A1 (n)) >(A1(n))('"+‘>

+
rm!
! +r+mr2 Asz () = 0 - 00 (73)
X -t — | = n , asn .
m+1) 2 8 3

We continue with the following.

Theorem 3.10 Let f € Cg (RV,X), 0 < B <1, u > 0,x € RY,N,n € Nwithn'™? > 2, w is for
p = 00. Then

(1
1B (f,x) — f (O, <1 (f, n%) + w—”ﬁy_”g =: A2 (n); (714)
(2)
[1Bs () = flly [ o < 2200 (75)
Given that f € (Cy (RN, X) N Cp (R, X)), we obtain lim,,_, o B, (f) = f, uniformly. The speed of
convergence above is max nLﬂ’ e(»ﬂ—+a) = nl

Proof We have that

oo k o0
Bi(fx)— 2 Y f(;)Z(nx—k)—f(x) > Zox—k

k=—00 k=—00
> k
= Z (f(;)—f(x))Z(nx—k). (76)
k=—00

; = @ Springer
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Hence
1Ba (f.%) = f W, < Z Hf( ) f @) Z<nx—k>
k=—o00
> k
= ) ‘f(;)—f(x) Z (nx = k)
= — Y
{H% —xHoo <7
> k
+ > Hf(;)—f(x) Z (nx — k)
= — Y
[”z —xHoo 7
(13) 1 >
< o (f, n—}f,)+2||||f||y||oo > Z (nx — k)
[ k= —0o0
1% =%l > 75
20) 1 2[ri, | o
= wi (f, n_/3>+eu(n'—_ﬂZ)’ (77)
proving the claim. O
We give the following.
Theorem 3.11 Let f € C3 (RY,X), 0 < B <1, x € RV, u > 0,N,n € Nwithn'™F > 2, wy is for
p = oo. Then
(1)
11 20yl - e
1Cn (fs %) = f O, =1 (f,;+n—ﬂ>+eu(nl—ﬂ_2)—- 3(n); (78)
(2)
ICa ()= 1l |, <rsm). (79)

Given that f € (CU (RN, X) NCg (RN, X)) , we obtain lim, ., C,, (f) = f, uniformly.
Proof We notice that

kil kol ky+1

/Ikﬂf(t)dt /
[

Thus, it holds (by (35))

f(tl,tg, .., ty)dadn .. dey

ky ky
n

ko ky " k
l‘1+—l‘2—|—— LI+ — ) dy - diy = flt+—)de. (80)
n 0 n

= ST

s (v [Tk .
Co(f)= ) (n /O f<t+n)dt>Z(nx k). (81)

k=—00

; = @ Springer
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‘We observe that

IC (f.2) = f O,

1 00
nN/O"f<t+§)dt)Z(nx—k)— Y f@Zmx—k

k=—00

D
- ki@((nN/jf(;_{_g)dt)—f(x))Z(nx—k)
(

14

14

00 1
= Z nN/n<f(t+§>—f(x))dt)2(nx—k) (82)
k=—o00 0 y
00 1
<> (nN/ ‘f(t—i—E)—f(x) dt)Z(nx—k)
k=—00 0 n 14
[e's] 1 k
= Z (nN/" f<t+—)—f(x) dt)Z(nx—k)
k=—00 0 " 14
[T
'] 1
+ 3 (nN/ f<z+5>—f(x) dr)zmx—k)
k= — 0 " v
[Tt
[e'e] 1 k
< Z <nN/nw1<f,||tlloo+H;—x )dt)Z(nx—k)
0 9]
k=—00
[T
211y > Z (Inx — k)
[ k=—o0
1% =l > 7
11 2[ri, |
= w (f’;-i_n_ﬁ)-i_eu(nl—_ﬁ@’ (83)
proving the claim. O

We also present the following.

Theorem 3.12 Let f € Cp (RY,X), 0 < B <1, x e RV, u > 0,N,n € N with n'=# > 2, w is for
p = 00. Then

ey

1Dyt — f ol <on (£ 10 L)y Il _ (84)
niJo Dlly =@\ LT s en(n!=f-2) 4
@)
HDn (f) = flly [, < 2a(m). (85)

Given that f € (CU (RN, X) NCpg (RN, X)) , we obtain limy,_, oo D,, (f) = f, uniformly.

Springer
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Proof We have that [by (37)]

1Dy (f. %) = f O, =

Yo b (NZx—k)— Y fX)Z(x—k)

k=—00 k= v
00 00 K
3 (3nk(f)—f(x))Z(UX—k) = wr(f<;+é)—f(x)>2(nx—k)
k=—o00 y
o0 0
k
<> (Zwr f(; - f ) )zmx—k)
k=—o00 \r=0
> o k r
— Z (Z <— — —f () )Z(nx—k)
k=—00 r=0 "
[T
> i k r
Z <,Z_(:)wr f(;-i—E)—f(x) V)Z(nx—k)
i|| —XH %
o k r
< kZ (;wr f(;-i-%)—f(x) y)Z(nx—k)
{H"—XH <7
+2[1f1y | > (Z (nx — k)
[ k=—00
e
2l
<a)1<f— T%)Jreu(nl—ﬁy_z):*“(”)’
proving the claim. O

We make the following.

Definition 3.13 Let f € Cp (RY, X), N € N, where (X, [|-|l,,) is a Banach space. We define the general
neural network operator

Fo(fix)i= Y lu(f)Z(nx —k)

k=—00
By (f.x). iflu(f)=f (5)@
=1Cu(fox), iflu(f)=nV[" f(ndt, (86)

Dy (fox), ifbu (f) = 8u ().

Clearly, I,z (f) is an X-valued bounded linear functional, such that [[1,x ()1, < [[I£1I, || N

Hence, F;, (f) is a bounded linear operator with ||| F, (/)1 | < [I/1,]
We need the following.

Theorem 3.14 Let f € Cp (RN, X), N > 1. Then, F, (f) € Cp (RV, X).
Proof Lengthy and similar to the proof of Theorem 10 of [18], as such is omitted. O

; = @ Springer
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Remark 3.15 By (22),itis obviousthat | | L, ()Il,, | <[], |, <oo,and L,(f)eC (1‘[?’:1 la;, bi], X) ,

given that f € C (]_[,N:1 [ai, bi], X) .
Call K,, any of the operators L,, B,, Cy,, D,,.
Clearly, then

&2 O, = 10K K D g = 10K Ol Ly = 171

etc.
Therefore, we get

llksol,| =t vien

the contraction property.
Also, we see that

HHKS(f)HyH < HK,'il(f)Hy” << [1Ka Dl < 1070 -

Here, K ,’1‘ are bounded linear operators.

Notation 3.16 Here, N € N, 0 < 8 < 1. Denote by

e \Y
CcN = (le—zu> » UKy =La,

L, if Ky = By, Cy, Dy,
1 .
=, K, =L,.B,,
Am) =31 l;f"_ e on
Z_{—n_ﬂ’ lfKn—CnaDm
Q= C(Ht]'il[ai’bi]vx>’ if Kn = Ln,
Cs (RN’X)’ ifanBanaDn,

and

~

_ T @i 6], if Ky = Ly,
RN» lfanBn, Cy, Dy.

We give the condensed.
Theorem 3.17 Let f € Q,0<pB <1, xe¥Y;n, u>0; N eNwithn'=P > 2. Then
(1)
=T (n) ’

2[11£1
1Kn (f2) = f O, < ew {wl (f. A @)+ %}

where wy is for p = oo,
and
(ii)
lKn (f) = flI, |, <T@ =0, asn— oo.
For f uniformly continuous and in 2, we obtain

lim K, (f) = f.

pointwise and uniformly.

(87)

(88)

(89)

(90)

oD

(92)

(93)

(94)

95)

: = @ Springer
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Proof By Theorems 3.1, 3.10, 3.11 and 3.12. O

Next, we do iterated neural network approximation (see also [10]).
We make the following.

Remark 3.18 Letr € N and K, as above. We observe that
Kif—f=(Kif—K,'f)+ (K" f =K 72 f)
+ (K2 f =Ky )+ 4 (K f = Knf) + (Kuf = ).

Then
s =1, = [Iir =&l |+ s = 2 |
&2 =k | IR = Kar D |+ IS = 11 ]
= Ik &ur = Dl |+ |1&2 &ur = DL |+ 1507 &t = 01|

to ot 1K K f = Oy ||+ [1Knf = £l | <7 [1Kaf = £1, ] -

That is
[IK: s =11, =7 I0Kaf = 51l 96)

We give the following.

Theorem 3.19 All here as in Theorem 3.17 and r € N, t (n) as in (94). Then
H||K,§f-f||y”oogrr(n). 97)

So that the speed of convergence to the unit operator of K, is not worse than of K,,.
Proof As similar to [18] is omitted. O

Remark 3.20 Letmy,ms, ..., m e N:my <mp <---<m,,0< B <1,u>0, feQ. Then

A@my) > A@mp)>--->A(m,), Aasin(91).

Therefore
w1 (f, A(my1)) > w1 (f, A(m2)) > --- > w1 (f, A(m,)).
Assime further that ml.lfﬂ >2,i=1,...,r. Then
1 1 1
1-8 = 1-8 Z 2 T N
e/l.(ml —2) eu(m2 —2) e/t(m, —2)
Let K, as above, i =1, ..., r, all of the same kind. We write

Ko, (Kmrq ( - Koy (Kmlf))) - f
=Kp, (Kmr_] ( K, (Km|f))) — K, (Kmr—l ( . Km2f))
+Kp, (mel ( . K, f)) — K, (Km,_, ( < Kong f))
+Kpn, (Kmr—l (... Km3f)) — K, (Km,_, ( . Km4f))
oo+ Ky (Kmy f) — K, f + K, f — f
= K, (Kn,y (- Komy)) (Kmy f = f) + Kon, (K, (- Kims)) (Ko f = f)
+Kn, (Kiyoy (- Kong)) K3 f = )+ + K, (K f = f) + Kn, f = f.
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Hence, by the triangle inequality of H lI-1l, || o » We get

1K, (K (o Ko (Ko 1)) = £, ]

< Wi Ko Ko (Ko £ = |

1 Ko Ko (Kot = D]
+””Kmr Kmr ](...K ))(szf_f H H
+ | 1, K £ = D1+ N = 11, ] =

[repeatedly applying (87)]

| +!

o,

d

[t = 11, ]+ [ = 11,

Kme—nyH

m,

et H T fﬂwa 1w s = 11, = ; Hkm £ = 11,

That is, we proved

,
1Ko, (K (- Kons (K 1)) = £, | = le [kt =11, - (98)
1=
We also present the following.
Theorem 3.21 Let f € Q; m, N, my,my, ..., meN:m <mp<---<m,,0<B<l,u >O;mg_ﬁ >
2,i=1,..., r,x €Y, and let (Kml ..... Km,) as (Lml ..... Lmr)or (Bm1 ..... er)or (le ..... Cm,) or
(Dml,...,Dm,),p = 00. Then
|| Kmr (Kmrfl ( . m2 ( mlf))) (X) - f (x)”y
o Koy (o Koy (K D) = 11,
,
= |1 s =11,
A,
<cNZ[w1(f A (m »)+H}
i=1 ( i _2)
<ren|wi (f,A(ml))+M . 99)
)

Clearly, we notice that the speed of convergence to the unit operator of the multiply iterated operator is not
worse than the speed of Ky, .

Proof As similar to [18] is omitted. O
We continue with the following.

Theorem 3.22 Let all as in Corollary 3.9, and r € N. Here, A3 (n) is as in (73). Then

HNens=£1L | = lizas = 71,0 < ras . (100)

Springer
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Proof As similar to [18] is omitted. O
Next, we present some L ,,, p1 > 1, approximation related results.

Theorem 3.23 Let p; > 1, f € C(H?zl [ai,bi],X) ,0<B<1,u>0;, N,n e Nwith n'=B > 2. and
A1 (n) as in (38), wy is for p = 0o. Then

1

n 1
Lot = £yl o = 410D (1"[ (bi — a») . (101)
B i=1
We notice that lim,,_, « || ILnf — flI, Hm’l_[":l[ai,bi] =0.
Proof Obvious, by integrating (38), etc. O

It follows:

Theorem 3.24 Let p; > 1, f € Cp (RY, X), 0 < B < 1,u > 0; N,n € N with n' =B > 2. and w is for
p = 00; A (n) as in (74) and P a compact set of RN . Then

1
Hlanf—fllyHmf <Xty (n)|P[r, (102)
where |P| < 00, is the Lebesgue measure of P. We notice that lim,,_, oo || I1Bnf — £, ||[)l p=0forf e
(Cu (RV, X)nCp (RY, X)).
Proof By integrating (74), etc. O
Next come.
Theorem 3.25 All as in Theorem 3.24, but we use A3 (n) of (78). Then
1
Catf = £l ], p =23 @) [P (103)
: _ N N
We have that limy—c [ 1Ca f = fIl, ||, , = 0for f € (Cu (R, X) N Cp (RY, X)).
Proof By (78). O
Theorem 3.26 All as in Theorem 3.24, but we use L4 (n) of (84). Then
1
[1Daf = FU, ], < 2a )IPI7T. (104)
We have that limy .o | | Du f = fll, |, , = 0for f € (Cu (RY, X) N Cp (RV, X)).
Proof By (84). O

Application 3.27 A typical application of all of our results is when (X - ||y) = (C, |-), where C is the set
of the complex numbers.
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