Colon Cancer Disease Diagnosis Based on Convolutional Neural Network and Fishier Mantis Optimizer

Colon cancer is a prevalent and potentially fatal disease that demands early and accurate diagnosis for effective treatment. Traditional diagnostic approaches for colon cancer often face limitations in accuracy and efficiency, leading to challenges in early detection and treatment. In response to these challenges, this paper introduces an innovative method that leverages artificial intelligence, specifically convolutional neural network (CNN) and Fishier Mantis Optimizer, for the automated detection of colon cancer. The utilization of deep learning techniques, specifically CNN, enables the extraction of intricate features from medical imaging data, providing a robust and efficient diagnostic model. Additionally, the Fishier Mantis Optimizer, a bio-inspired optimization algorithm inspired by the hunting behavior of the mantis shrimp, is employed to fine-tune the parameters of the CNN, enhancing its convergence speed and performance. This hybrid approach aims to address the limitations of traditional diagnostic methods by leveraging the strengths of both deep learning and nature-inspired optimization to enhance the accuracy and effectiveness of colon cancer diagnosis. The proposed method was evaluated on a comprehensive dataset comprising colon cancer images, and the results demonstrate its superiority over traditional diagnostic approaches. The CNN–Fishier Mantis Optimizer model exhibited high sensitivity, specificity, and overall accuracy in distinguishing between cancer and non-cancer colon tissues. The integration of bio-inspired optimization algorithms with deep learning techniques not only contributes to the advancement of computer-aided diagnostic tools for colon cancer but also holds promise for enhancing the early detection and diagnosis of this disease, thereby facilitating timely intervention and improved patient prognosis. Various CNN designs, such as GoogLeNet and ResNet-50, were employed to capture features associated with colon diseases. However, inaccuracies were introduced in both feature extraction and data classification due to the abundance of features. To address this issue, feature reduction techniques were implemented using Fishier Mantis Optimizer algorithms, outperforming alternative methods such as Genetic Algorithms and simulated annealing. Encouraging results were obtained in the evaluation of diverse metrics, including sensitivity, specificity, accuracy, and F1-Score, which were found to be 94.87%, 96.19%, 97.65%, and 96.76%, respectively.

Erişime Açık
Görüntülenme
33
10.07.2024 tarihinden bu yana
İndirme
1
10.07.2024 tarihinden bu yana
Son Erişim Tarihi
04 Aralık 2024 16:16
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Colon Cancer Disease Diagnosis Based on Convolutional Neural Network and Fishier Mantis Optimizer
Yazar
(dc.contributor.author)
Cevat Rahebi
Yayın Yılı
(dc.date.issued)
2024
Tür
(dc.type)
Makale
Özet
(dc.description.abstract)
Colon cancer is a prevalent and potentially fatal disease that demands early and accurate diagnosis for effective treatment. Traditional diagnostic approaches for colon cancer often face limitations in accuracy and efficiency, leading to challenges in early detection and treatment. In response to these challenges, this paper introduces an innovative method that leverages artificial intelligence, specifically convolutional neural network (CNN) and Fishier Mantis Optimizer, for the automated detection of colon cancer. The utilization of deep learning techniques, specifically CNN, enables the extraction of intricate features from medical imaging data, providing a robust and efficient diagnostic model. Additionally, the Fishier Mantis Optimizer, a bio-inspired optimization algorithm inspired by the hunting behavior of the mantis shrimp, is employed to fine-tune the parameters of the CNN, enhancing its convergence speed and performance. This hybrid approach aims to address the limitations of traditional diagnostic methods by leveraging the strengths of both deep learning and nature-inspired optimization to enhance the accuracy and effectiveness of colon cancer diagnosis. The proposed method was evaluated on a comprehensive dataset comprising colon cancer images, and the results demonstrate its superiority over traditional diagnostic approaches. The CNN–Fishier Mantis Optimizer model exhibited high sensitivity, specificity, and overall accuracy in distinguishing between cancer and non-cancer colon tissues. The integration of bio-inspired optimization algorithms with deep learning techniques not only contributes to the advancement of computer-aided diagnostic tools for colon cancer but also holds promise for enhancing the early detection and diagnosis of this disease, thereby facilitating timely intervention and improved patient prognosis. Various CNN designs, such as GoogLeNet and ResNet-50, were employed to capture features associated with colon diseases. However, inaccuracies were introduced in both feature extraction and data classification due to the abundance of features. To address this issue, feature reduction techniques were implemented using Fishier Mantis Optimizer algorithms, outperforming alternative methods such as Genetic Algorithms and simulated annealing. Encouraging results were obtained in the evaluation of diverse metrics, including sensitivity, specificity, accuracy, and F1-Score, which were found to be 94.87%, 96.19%, 97.65%, and 96.76%, respectively.
Açık Erişim Tarihi
(dc.date.available)
2024-07-03
Yayıncı
(dc.publisher)
MDPI
Dil
(dc.language.iso)
En
Konu Başlıkları
(dc.subject)
Convolutional neural network
Konu Başlıkları
(dc.subject)
Metaheuristic methods
Konu Başlıkları
(dc.subject)
FMO
Konu Başlıkları
(dc.subject)
Fishier Mantis Optimizer
Konu Başlıkları
(dc.subject)
Colon cancer
Tek Biçim Adres
(dc.identifier.uri)
https://hdl.handle.net/20.500.14081/2114
Dergi
(dc.relation.journal)
Diagnostics
Dergi Sayısı
(dc.identifier.issue)
13
Esere Katkı Sağlayan
(dc.contributor.other)
Javad Rahebi
Esere Katkı Sağlayan
(dc.contributor.other)
Aybaba Hançerliogullari
Esere Katkı Sağlayan
(dc.contributor.other)
Amna Ali A. Mohamed
Esere Katkı Sağlayan
(dc.contributor.other)
Rezvan Rezaeizadeh
Esere Katkı Sağlayan
(dc.contributor.other)
Jose Manuel Lopez-Guede
DOI
(dc.identifier.doi)
10.3390/diagnostics14131417
Dergi Cilt
(dc.identifier.volume)
14
wosquality
(dc.identifier.wosquality)
Q1
Department
(dc.contributor.department)
Yazılım Mühendisliği
Wos No
(dc.identifier.wos)
WOS:001269931800001
Veritabanları
(dc.source.platform)
Wos
Veritabanları
(dc.source.platform)
PubMed
Veritabanları
(dc.source.platform)
Scopus
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms